1 Problem Set #1

1. Suppose that $\rho = e^{-\beta H}$ is a thermal state in an ordinary Hilbert space, where H is any operator for which the resulting state is normalizable. Show that this state satisfies the KMS condition for any operators A, B:

$$\langle A(\tau)B\rangle_{\rho} = \langle BA(\tau + i\beta)\rangle_{\rho},\tag{1}$$

where $A(\tau)$ represents the time translation of the operator A, and $\langle BA(z) \rangle_{\rho}$ is analytic in the strip $0 \ge \text{Im}(z) \ge \beta$.

(This exercise justifies the use of the KMS condition as the *definition* of a thermal state in more exotic contexts, such as type III von Neumann algebras.)

- 2. Consider the following properties of the von Neumann entropy described during the lecture:
 - i) Positivity: $S(\rho) \ge 0$,
 - ii) Invariance under Unitaries: $S(U\rho U^{\dagger}) = S(\rho)$,
 - iii) Additivity under Tensor Product: $S(\rho_A \otimes \rho_B) = S(\rho_A) + S(\rho_B)$,
 - iv) Triangle Identity: $S(A) + S(B) \ge S(AB) \ge |S(A) S(B)|$,
 - v) Continuous (for finite dimensional Hilbert spaces),
 - vi) {Strong Subadditivity: $S(AB) + S(BC) \ge S(ABC) + S(B)$ },
 - vii) Concavity: $S(\lambda \rho + (1 \lambda)\sigma) \ge \lambda S(\rho) + (1 \lambda)S(\sigma)$,
 - viii) Chain Rule: If $\rho = \bigotimes_i \lambda_i \rho_i$ (block diagonal), then $S(\rho) = \langle S(\rho_i) \rangle \sum_i \lambda_i \ln \lambda_i$.

(a) Show that Strong Subadditivity implies Weak Monotonicity: $S(AB) + S(BC) \ge S(A) + S(C)$ by assuming the existence of a 4th system D such that ABCD is pure, and using the fact that $S(R) = S(\bar{R})$.

(b) See how many of the properties you can prove on your own. (But don't try too hard for Strong Subadditivity, whose proof is very difficult!) For the proof of Araki-Lieb, try using the purifier trick described in (a). Note that Concavity can be proven from Subadditivity and the Chain Rule.

(c) Determine which of these properties are *also* obeyed by the Renyi entropy $S_n = \frac{1}{1-n} \ln \operatorname{tr}(\rho^n)$, which limits to the von Neumann entropy as $n \to 1$. For simplicity you may wish to focus on the case n > 1 and finite dimensional Hilbert spaces. Note: the simplest counterexample to Concavity involves a Hilbert space with a large number of states.