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Algebras
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Abstract

Relative entropy of two states of a von Neumann algebra is defined
in terms of the relative modular operator. The strict positivity, lower semi-
continuity, convexity and monotonicity of relative entropy are proved. The
Wigner-Yanase-Dyson-Lieb concavity is also proved for general von Neumann
algebra.

§1. Introduction

A relative entropy (also called relative information, see [12], [14])
is a useful tool in the study of equilibrium states of lattice systems
([21, [4], [6]). For normal faithful positive linear functionals ¢ and ¥
of a von Neumann algebra Wi, the relative entropy is defined by

(1.1) S(@/)=—(¥, (log 4o,9)¥)

where Aqy is the relative modular operator of cyclic and separating vec-
tor representatives @ and ¥ of ¢ and y, and (1.1) is independent of
the choice of vector representatives @ and Y. The definition (1.1)
coincides with usual definition

(1.2) S(pg/py)=tr (pylog py,)—tr (p, log py)

when 9 is finite dimensional and p, and p, are density matrices for
¢ and .

We shall prove the following properties of S(¢/i).

(1) Strict positivity: If ¢(1)=y(1), then
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(1.3) S(o/) 20

and the equality holds if and only if ¢=1.
(2) Lower semi-continuity: If lim|¢,—¢|=lim ||y,—¢||=0,

(1.4) lim S(¢a/r) Z S(P/Y) -

(3) Convexity: S(¢/y) is jointly convex in ¢ and . Namely
(1.5) 22:8(ilY) 2 S(ZA:i/ ZA;)

if 4,20 and Z4;=1.
(4) Monotonicity:

(1.6) S(Exd/Exr) = S(/1)

where Eg¢ and LEg denote the restrictions of ¢ and { to a von Neu-
mann subalgebra 9t of M, and N is assumed to be one of the following:

(Case o) Jt=U'nMW for a finite dimensional abelian von Neumann
subalgebra A of 9.

(Case f) M=NNR,.

(Case y) 91 is approximately finite (i.e. generated by an increasing
net of finite dimensional subalgebras). This case includes any finite
dimensional 9.

In the proof of convexity, we prove that

(1.7) [(4ow)?’2x¥|?

is jointly concave in ¢ and ¥ for fixed xe®t and pe[0, 1]. (Wigner-
Yanase-Dyson-Lieb concavity.)

For connection of these general results with finite matrix inequalities,
see [71.

§2. Strict Positivity and Lower Semi-Continuity

We shall take @ and ¥ to be unique vector representatives of ¢
and ¢ in a fixed natural positive cone V=Vy=V, ([3]). Then

@.1) B =(Agp)' 2.
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Let E, be the spectral projections of 44y. Then

(2.2) S(p/)= — S:’:loga AW, E, 7).
By (2.1),
(2.3) S:/l (¥, E,¥)= (1)< 0.

Hence (2.2) is definite and gives either real number or + co.
Since the numerical function loga is concave,

(2.4) S:log o(2) du(2) §10gS:oc(/1) du()

for any positive measurable function «(d) of A1e(0, o0) and any proba-
bility measure g on (0, o). By taking a(2)=A41'/2 and du(d)=d(¥, E,¥)/
I¥]12, the inequality (2.4) with logo(d)=(logl)/2 yields

(2.5) S(p/p)z =2y (1) log {(®, PYY(D)} .
By Schwartz inequality,
(2.6) (@, )< |2] 1P =(¢@Dy(D)* /2.

Hence the right-hand side of (2.5) is non-negative when ¢(1)=(1) and
the equality holds only if the equality holds in (2.6), namely only if
®=Y¥. This proves the strict positivity. (An alternative proof follows
from logi=i—1.)

To prove lower semicontinuity, let ¢,, ¢, ¥, and ¢ be normal faith-
ful positive linear functionals of 9t such that

Let &, &, ¥, and ¥ be vector representatives of ¢,, ¢, ¥, and Y in V.
Then

(2.8) lim|®,—®|=0, lim|¥,—¥|=0
n n

and hence
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2.9 lim (14442 )" '=(1+45/3)7!

strongly. (See Theorem 4(8) in [3] and Remark 2 at the end of section
4.) Hence

210 lim (4o,,2,)=F(4o.0)

for any bounded continuous function f. (See [10], Lemma 2.)
Let #/=3,4,... and

(2.11) fv(A)=(logN if A=logN,
—logN if A<-logN,
LA otherwise.

Let E% be the spectral projection of 4y, w,. Since

(7 aw, Epp) =102 =9,

we have

2.12) ogg:(loga—log N) d(¥,, En?.)
=(urtogGmy: d(e,, B
£¢,(D)(eN)~1.

Since

1/N

(2.13) SO (log 2+1ogN) d(¥,, E1¥,) <0,

we have

(2 14) S(¢n/¢n) _2. - (qlm fN(log Ad>,.,‘f’,.) UII") - ¢n(1) (GN)_ 1

By using (2.10) with f(x)=fy(logx), we obtain from (2.14)

(2.15) IimS(@,/Ya) 2 — (¥, fu(log 4g,2)¥) — d(1) (eN) ™.
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Since the right-hand side of (2.15) tends to S(¢/Y) as A —oo, we have
(1.4).

§3. Unitary Cocycle

We need some properties of unitary cocycle in the proof of WYDL
concavity. The unitary cocycle is defined by

(3.1 (D¢: DY), =(dop)" 45"

It is unitary elements of 9t continuously depending on real parameter ¢
and satisfying the following equations ([8], Lemmas 1.2.2, 1.2.3 and
Theorem 1.2.4):

(32 (D¢1: D$3)(Déz: Dos)=(D¢,: Ds),,
(3.3) (D¢: DY), =(Dy: Do)F,

(34) (D¢: DY),0¥(x)(D¢: DY) =0?(x),

(3.5) (D¢: DY)t {(D¢: DY)} =(D¢: DY)

We now start deriving some equations useful in our proof of WYDL
concavity (cf. [5]).

If A=<y with A>0 (and only in such a case), (D¢: Dy), has an
analytic continuation in ¢ to the strip 0=2Im¢=—1/2. In other words
there exists an Yi-valued function «y(z) of z in the tube region

(3.6) {z; 0SRez<1}

such that a,(z) is strongly continuous in z on (3.6), holomorphic in z
in the interior of (3.6), bounded (by A~Rez/2) and satisfies

3.7) 2y(2if)=(Dp: DY),
(3.8) ap(2)¥ = (4o p) P,
3.9 oz¢(l)'P=cD.

(For later typographical convenience, we scaled ¢ by 2i.)
The existence of such «y(z) is seen as follows: First define oy(z)
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on a dense set MY by

3.10) ap(2)X'V=x"(dp w)*/* 7P, x" eM'.
For z=2it,

3.11) oy(2)x'¥V=(D¢: DY) x'¥

and hence

(3.12) log(2)x ¥l = | x" ¥ .

If (and only if) A2¢ <y for A>0, there exists 4eIM satisfying ||A||SA~1/2
and ®=AY (Theorem 12(1) of [4]). Then

Aify ® =AYy AV = 02 () 4 5P
=09(4) (D¢p: DY), ¥ =(Dg: Dy),c¥(A)¥P.
Hence for z=2it+1,
(3.13) ugy(2)x'" P =(D¢: DY), c?(A)x'Y
due to (2.1) and hence
(3.14) log(z)x" Pl SA~H2|1x 2]

Since (dgw)?/?¥ is holomorphic in z for Reze(0,1) and continuous
for Reze[0, 1] due to Y eD(44/3) (see (2.1)), we have

(3.15) g2 = up - |(f, ay(2)x"P)

S
=1, lx"¥||=1
Sl—Rez/Z

by three line theorem. The rest follows from the definition.
Since (dpw)!/?¥ =PV, we have

(3.16) B =0,(1)¥ =Jay(1) ¥ = j(a,(1)) 7.

where J is the modular conjugation operator common to vectors in V.
The analytic continuation of the cocycle equation (3.5) yields

3.17) ay(2is)a? {o4(2)} = oy(z + 2is)
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for real s and any z in (3.6). In particular
(3.18) ag(1+i0)*og(1+i0) =0, {ors(1)*or (1)} .
The cocycle equation (3.5) can be rewritten as
(3.19) (D¢: DY), =(D: Dy),.,0¢{(D: DY)} .

When we apply this on ¥, the resulting equation has the following
analytic continuation:

(3.20) ug(z)V =04z, +2,)45 20 (—Z,)* P,

which reduces to (3.19) (applied on ¥) when z; and z, are pure imagi-
nary and hence holds when z,, —Z, and z,+z, are all in (3.6). If we
set z;=1 and z,=z—1 with 0<Rez=1, we obtain

(3.21) ¢=a¢(1)Y’=&¢(2)A&,/2a¢(1—Z)*'I’
= oz¢(z)j(oc¢(1 -2)Y,

where j(x)=JxJ e M’ for xeM and j(x)¥ =A4L2x*¥.
By the intertwining property (3.4),

(3.22) 0)(2)0% 1,/ 2(X) =02, ()0 4(2)

holds for z=2it and hence

(3.23) ay(2)j(ay(1—2) 4 2x ¥
=j(ay(1—2)y(2)02 ;12 (X) ¥
=j(0g(1=2))02;,/2(x)ty(2) ¥
=02, 120y (2)j(eg(1—2)) ¥
=02,,,,(X)P=432x9,

where (3.21) is used. Since two extreme ends of this equation have
analytic continuations in z in (3.6), the equation holds for such z. In
particular, for 0<p<1,

(3.24) ay(p)j(ey(1— p))AY 2x¥ = 45/ 2 x .
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If ¢ and y are normal faithful positive linear functionals and
(3.25) Y=1¢+(1—A)y

with 0<l<1, then Y=g, y=(1—-A)y with A>0 and 1—-1>0. By (3.16),
we have

(3.26) P(x)=(2, x®)=(¥, xj(2g(1)*24(1)) ¥)
for xe M. Similarly
x(X)=(¥, xj(o(1)*a (1)) ¥).

Due to (3.25), we have

x*Y, J{1 — Aoy (1)*ay(1) — (1 = Do, (1)*a (1)} ¥)=0.
Since x*¥, x e M are dense, J2=1 and ¥ is separating for M,
3.27) 1= Aorg(1)*ots(1) + (1 = Do, (1)*ar, (1)
If we use (3.18), we also obtain

(3.28) Jrg(1+ i0)*o,(1 + i6) + (1 — Aoy (1 + i6) o, (1 + i6) = 1.

§4. WYDL Concavity and the Convexity of Relative Entropy

First we prove the concavity of

(4.1 1($, x)=|145>x2||?

in ¢ for any fixed xe and pe[0, 1]. We use the proof technique of
Lieb ([11], Theorem 1).

Let ¢, x, 4 and Y be as in the previous section. QOur aim is to
prove

(42) /’pr(qsa x) + (1 - l)fp(%s X) = fp(l//s x) .
Consider
4.3) 9(2)=ATy(2)+(1 =) T(2),

4.4) Ty(2) = (0g(2)j(otp(1 — 2))AY 2x ¥, 04(2)j(ets(1 — 2)4%%x¥P).
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Since g(z) is holomorphic in z on (3.6), we have

(4.5) lg(p)l max {sup g(i0), sup g1 +iO)[} -
By (3.24),

By elementary inequalities,
I Ty(i0)] < (1/2) {lotg(— 10) (g (1 — 10))AY/ 2x P |2
+ [loeg (10)j(oes(1 + i0))AY 2x ¥ 2} .
By the unitarity of a4(i0) and by (3.28), we have
Moty (i0)j(oeg (1 +i0))A4 B/ 2x P || 2

+(1 = D)o, (10)j(or (1 +10))AY 2x P || 2 = || 45/ 2x 7| 2.
The other term is obtained by substitution of —6 into 6. Hence
(4.7 lgGO) < | 48/ 2x P12 =£, (s, x).
A similar calculation starting from

ITy(1 +i0) < (1/2) {11 j oty — i0))otg(1 — i0) A%/ 2x P'|| 2

+ 11 (1))t g(1 +6) A5/ 2x P 2}

yields
(4.8) lg(1 +i0) =, (¥, x).

Collecting (4.5), (4.6), (4.7) and (4.8) together, we obtain (4.2).
Next we prove the WYDL concavity. The passage from (4.1) to

(4.9) T @1, &2, X)=(40,,0,)"xP,|?

is by the 2x2 matrix trick ([8], Lemma 1.2.2).

Let M, be a 2x2 full matrix algebra with a matrix unit u;; (i=1, 2;
j=1,2) acting on a 4-dimensional space & with an orthonormal basis
e; (i=1,2;j=1,2) satisfying u;e,;=0;,e;. We consider the von Neu-
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mann algebra MW, acting on HRK instead of M acting on &. Let
(4.10) @=¢1®911+¢2®622,

where @, and &, are cyclic and separating vectors in a natural cone in
$ corresponding to functionals ¢,(x)=(®; xP,), xeIM. The vector &
is cyclic and separating and its modular operator yields the relative
modular operator through the relation

4.11) (Aa)plz(x®”1z)@={(Adn,q:z)p/zx(pz} ®ey,

where xe M. Since

(4.12) PR)=(D, 2)=¢;(x11)+d(%22)
for
(4.13) £=2xij®uij,

¢ is linear in (¢,, ¢,). Hence the concavity of
(4.14) I(43)P12(x@u15)B|12 = | (4o,,0,)7/2 %P 12

in ¢ implies the WYDL concavity.
Let E, be the spectral projection of Agpy. The WYDL concavity
just proved implies that

(4.15) skon={"wace, E,)
is concave jointly in ¢ and Y, for fixed pe[0, 1]. If we prove

(4.16) S@)= lim p (WD —s, (81}

the convexity of relative entropy follows.
To prove (4.16), we note that

4.17) tim p‘lgw(l _0)d(¥, E,¥)= —S°°1og,1d(qf, E,¥)
p—+ & &

due to (2.3) and

p~1A?—1—plogA|Z(p/2)*(log A)*
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for A=z1 and p>0. Since 1—47=0 for 1=1, (4.17) is a lower bound
for the inferior limit of p~!{y(1)—s,(¢/Y)} for e<1. Hence (4.16) holds
if S(¢p/Y)=0c0. Since

0=p™'(1-A")= —logi

for 0<A=<1 and p>0,
p-1S” (=) d(¥, E,¥)< -SE log Ad(¥, E,¥)
0 0

tends to 0 as &¢—0 uniformly in p if S(¢/Yy)<oo. Hence (4.17) implies
(4.16) also for this case.

Remark 1. As a special case of WYDL concavity with p=1/2, we
have a result of Woronowicz [15] that

(4.18) (D, xj(x)¥V)=(Ix*D, x¥)
=(4p3x¥, x¥)=|45/$xP|?

is concave jointly in ¢ and . For x=1, it implies the concavity of
(@, V) in (¢, ). This implies the concavity of ¢—E&(p)= in the sense
that

(4.19) S(Ady +(1=A)pr)— A8(Py) — (L= De(Ps) eV

because the set of é(Y)=¥ is V and V is selfdual.
Remark 2. If (2.7) and hence (2.8) hold, then

(4.20) lim |&,— &||=0

where &, and & are defined by equation (4.10) where @, is replaced by
@, or & and P, is replaced by ¥, or ¥. By the proof of Theorem 10
in [3],

(4.21) lim (1+44/2) 1 =(1+44/2)"1.

The subspace H®e;, of H®K is invariant under (1+4%/2)"' and
(1+43/2)7" and their restrictions to this space are
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(A+452)1(f@e1)={(1+44/3)f}®ey2,

(@+452)1(f®e12)={1+ 432 )/} ®e2.
Hence (2.9) holds.

Remark 3. From the 2x2 matrix method above, we can derive
the following useful formula. Let A¢;=¢, for some A=0. In this
case there exists Ae®t such that ¢?:y(4) has an analytic continuation
for 0=Im¢<1/2 with ¢%4(4)20, |A||<A'/? and

(4.22) h2(x) =, (A*xA)

due to Theorem 12(1) and Theorem 14(5) of [3]. (The analyticity and
positivity condition are equivalent to A®;e€V.)) We can then prove the
formula

(4.23) 0?}2(“12)=A*”12

as follows.

Let &,, #,, & be constructed as before. Let J be the modular
conjugation operator for &. Then J(f®e;)=Jf®e; (for example by
Lemma 6.1 of [1]). Since JA3J=43!, we have

(4.24) A5113,=TA52% J.

Hence

(4.25) 45113, 2,=T43/2, P, =4} 20, AP,
=A*®,,

and

(4.26) 451/2”1243=(45,1,/$z¢z)®912

=A*¢2®612=A*u12@.

This implies that o@(u,,) has an analytic continuation ¢@(u,,)eM for
0=<Imz<1/2 satisfying
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(4.27) af(lllz)y'()ﬁ:yldgz”lz@: y'eMm

and (4.23) by Lemma 6 of [3].

§5. Some Continuity of Relative Entropy

We need the monotonicity of (1+44y)! in ¢:
Lemma 1. If A,¢,=1,¢, for 1,>0, 1,>0, then

(5.1) A+ de w) 1S+ 240,9)7!

for any A>0.
Proof. For xe9M, we have

(5.2) [(A+2140,9) 2x P2 = I(A+ Ay45,9) 2x¥|?

=219 1(xx*) — A,¢,(xx*) 20,

where we have used
1|(,1+/1j4¢,,,)1/2xqf||2=S(,1+,1jt)d(xsv, Ex¥)
=AxP|2+ 4,11 44/Fx P2 =A|x P2+ 4;]| x* | 2

for A(p,,,:StdE,. Since MY is the core of A3/%y, (5.2) implies that the
domain of (A+1;44,4)!/? is contained in that of (A+1,44,)!/? and

G+ 2140,9) 2 f12 2 (A4 2240,0) V2 f 112

for all f in the domain of (141,44, 4)!/2. For any ge$, we take f
=(A+A14p, 9)"/?g and we find

[(A42240,) 2(h+ 2140, w) " 2g| =gl
Hence
A=(A+2,40,0) 2(A+ 2140, w)~ /2

satisfies |A||<1. For f=(A4+1,44,y) 1/2h with any he$, we have
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[+ 2240, ) 2R 2= | FI2Z A% | 2= | (At 2y Ao, )2 /2h]12
which proves (5.1).

Lemma 2. For >0, let

(5.3) bo=d+ol, Y=Y+,
Then
(5.4) lim Tim S(gu,) =S/

Proof. First we prove
(5.5) Tim S(y)=S8.0).

For this, we use the formula

(5-6) JA;}QJ=A(D,‘P'
Since
(5.7 Y,se7 g,

for en<1, there exists A, €M satisfying [|4,]| <& !/2 and
(5.8) Y, =4,P.€V.

(Theorem 12(1) in [3].) Since lim¥,=%¥, we have limA4,=A4, where
Ag®@.=Y, |Aol|Se71/2. By (5.6), we see that ¥, is in the domain of

A;,j,/,?n and
(5.9) AL W, =425 A, D, = ALY,

In exactly same way as the proof of the lower semicontinuity (see
(2.9), (2.10), (2.11) and (2.12)), we have

(5.10) ,,l—i»n-;?o (![/", fn(log Adzg,v’,,) an) =(Y, fy(log 4o, v)¥),

(5.11) (¥, (A—Eg"){log 4o, w,—fv(108 4o, w,)} ;)| = ¢ (1) (eN)™

where #=0 and ¥,=Y¥. On the other hand, (5.9) implies
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(5.12) (¥, Ey™{logde,w,—fy(0gde, v I PIIS AP, 2(Ne)~?

due to the same estimate as in (2.12). Since |4, =& 1/2 independent
of 1, we see that

(5- 13) hTE—O |(T1p IOg ACDE,‘{’,, T}]) - ( YI, lOg Atbc,‘l’ T)I
-

=2{¢ D)+ 2Y(1)} (eN)~ 1.

Since N>1 is arbitrary, we have (5.5).
Now we prove

(5.14) lim S(¢¥)=S($/).
By lowcer semicontinuity,

(5.15) lim S(¢,/9) = S(d/ ).

(If S(¢/y)=o0, then (5.14) follows from (5.15).)
From the formula

(5.16) ST(&-%}dm log(1+ (A/N)) —log(1 + )
we obtain
(5.17) Fo(N)=(¥, log{1+(dpw—1)/N}¥)—(¥, logdpw¥)

=77, (4 Ao )= log ) 92

(The interchange of dt integration and d(¥, E,¥) integration is allowed
for positive integrant (¢+4)~!.) Since ¢,=¢, Lemma 1 implies

(5.18) Fo(N)SFoN).
Since [|44/% Y| =9, and [|44/3¥| =|®| are finite, we have

lim Fg (N)=—(¥, log4,, %),
N-w

lim Fg(N)=—(¥, logdew¥).
N-w
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Hence

(5.19) S(/V)=S(P/).
The inequalities (5.15) and (5.19) imply (5.14).

Remark. The above proof shows that if ¢,=¢,, then S(¢/¥)
=S(¢,/t). The same conclusion follows also from &,—@, e V.

Lemma 3. Let M, be an increasing net of von Neumann sub-
algebras of M such that \UM, generates M. Let ¢ and Y be normal
faithful positive linear funcaz‘fionals of M. Let ¢, and Y, be restrictions
of ¢ and  to M,. Assume that

(5.20) Yy=k¢
for some 0<k. Then

(5.21) lim S(¢/Vr.) =S(d/¥).

Proof. Let d=0®e,;+¥Q@e,, and ¢ be as in (4.10) and (4.12).
Let iﬁi=§m®9ﬁ2, SfJ\Ea,:iI’la@‘Miz, e, be the projection on the closure of
i, B, A be the modular operator for & and A, be the direct sum of the
identity operator on (1—e,)(H®K) and the modular operator of & for
EITAE,, on ¢,(H®K). By Theorem 2 of [2],

(5.22) lim(1+A4) t={1+4)1.
Hence
(5.23) lim (”1255 fn(log Za)ulz‘i) =(“12@o fu(log Z)”lzqs) )

where fy is given by (2.11).
From

(5.24) ||Zalz/2“126”2 = ”21/2“12‘13”2 = llu’i‘zeﬁllz
=¢(1),

we obtain as in (2.12)
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(5.25) Oggw(logi—logN)d(uu@, Esu,,®)
N
=¢(1)(eN) 1,

(5.26)

o

< §°°<logi—log N)d(u1,8, Eui,®)
N

Sop(M)(eN)™!

for spectral projections E¢ and E, of A, and A.
From k¢ =y and (4.23), we have

(5.27) 14712u,,®|2 =y(A4,A%)
<ky(1),
(5.28) 14=112u,,®)|> =(AA*) < k(1)

for some A4, and A4e9. Hence
1/N P P
(5.29) ogg (log /. +log N)d(u,,&, Esu,,®)
0
=2kf(1) inf Alog(NZ)
A€[0,1/N]
2 —ky(1)(eN)~1,
(5.30) 0 gg” Y log A-+log N)d(u,,®, E,u,,8)= — ki(1)/(Ne).
0
Collecting together (5.23), (5.25), (5.26), (5.29) and (5.30), we have
(5.31) lim (u,, 9, (log A)u,®)=(u;,9, (log A)u,,P).
Hence (5.21) holds due to

u1z@= Y®ey,, Za(f®e12)=(A¢,‘I’f)®e12

and independence of (1.1) on the choice of vector representatives.

Remark I. Without the condition (5.20), we can obtain (5.23),
(5.25) and (5.26). This implies
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(5.32) lim S(¢a/h.) 2 S(H/V)-
If we have monotonicity, then (5.32) implies (5.21).

Remark 2. In the proof of Lemma 2 in [2], it is stated that
(5.33) 4,0,V =20"Y—h,V.

This is incorrect and should be corrected as follows:

The commutant of M, on M, ¥ is EM.E, where E, is the projec-
tion on 9M,¥ and belongs to MW,. Since ¢=<y and y is faithful, there
exists a unique h, e E,%,E, satisfying

(5.34) PQ=(hY, 0¥), QeM,

For this h;, Lemma 1 of [2] is applicable and

(5.35) 4,0, Y =2h¥Y—h,P.

Since E,Q¥=QV for QeM, and E,¥=Y, (2.4) of [2] implies
(5.36) h,=E,WE,

satisfies (5.34). Hence

5.37 4,0, W =2EnY¥Y—h,V.

Since E,—1, we still have the conclusion of Lemma 2 in [2].

§6. Monotonicity for Case «
We start with lemmas which are needed in the proof.

Lemma 4. Let N be a von Neumann subalgebra of M contained
simultaneously in the centralizer of ¢, and ¢,. Then

(6.1) S(¢1/¢2)=S(E§n¢1/E§n¢2)
for R=A"n M.

Proof. Let & and ¢ be constructed as in (4.10) and (4.12). Let
H=A®1. Then ﬁ’n‘fﬁ=iﬁ®9ﬁ2, by the commutant theorem. Since
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A is in the centralizer of ¢, and ¢,, we have

(6.2) H(x®DY) =1 (xy11)+ P2(xY22)=1(¥11X) + P2(y22%) = P(¥(x®1))

for xe. Hence 9 is elementwise o invariant. Hence Sft_=.i)1®§mz
is ¢? invariant as a set. The state ¢ restricted to N obviously satisfies
the KMS condition relative to ¢ and hence of coincides with the modu-
lar automorphisms of @M, for the state ¢ restricted to $t. This also
implies that MHP)K is Afg invariant and the restriction of A4z to this

space is the modular operator 43 5 of $ for 9t. Since 1®ulze§t, we
have

(6.3) S(Eq¢1/Eqd,)= —((1®u12)@, (log45,5) (1®u12)@)

= —((1Qu;)®, (log 45) 1Qu,,))

=58(1/2)-
Lemma 5. Let o be automorphisms of 9. Let 4,20, X),=1,
and
6.4) ¢'=2ZNpoa;, Y =2 ea;.
Then
(6.5) S(¢"W)=S(¢/W).

Proof. The desired inequality (6.5) follows from the convexity of
relative entropy if we prove

(6.6) S(¢poafpoun)=S(¢/)

for any automorphism o of 9.

For any automorphism o of 9, there exists by Theorem 11 of [3]
a unitary U, such that

(6.7) UxU¥=a(x),

(6.8) UzE0 =20,

(6.9) LU., J1=0,
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where &(y) is the unique vector representative of a normal positive linear
functional y on the fixed natural positive cone V.
From the definition

(6.10) JAHZ ), £y} E(a2) = x*E(1)

and the properties (6.7), (6.8), and (6.9), it follows that

(6.11) UsdiZo.conUe= A4 onrenar

From (6.8) and (6.11), we obtain (6.6). Q.E.D.

We now prove the case a. Let E,...E, be minimal projections of
A such that XE;=1. Let

(6.12) aix)=Q2E;—x(2E;~-1), xe M,

which defines mutually commuting inner automorphisms «; of 9. Let
(6.13) ¢’ =2""Tpougiomr0uln,

(6.14) Y =2"nZ oG 0+ 008,

where the sum is over all possibilities for 6;=0 or 1 and «f is an identi-
ty automorphism while a}=«;. The functionals ¢’ and Y’ are invariant
under «; for all j. Hence E; are all in the centralizers of ¢’ and Y.
By Lemmas 4 and 5, we have

S(Exd/Exy)=S(Eg¢'[Eqi")
=S(o' N )=S(o/Y).

This proves the monotonicity for the case |=UA' NI with a finite dimen-
sional commutative subalgebra 9.

§7. Monotonicity for Case S

We start from a special case and gradually go to a general case.

(1) Commutative finite dimensional R,: Let E,...E, be the minimal
projections of M, such that XE,=1. Since 9, is in the center of I,
E; are invariant under any modular automorphisms. Consequently, we
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have

7.1) H=2%E;9,

(7.2) 0, =I%E;P,, (k=1, 2),
(7.3) A0,,0,=2%45 0, 5,0,

Let

(7.9 Oj(x)=P(E;x), xedn.

From (7.2) and (7.3), we have

(1.5) S(§116)=Z5(b 1192

We also have

(7.6) Egi=Sdy=2n""(ndh,).

By convexity we have

@.7) S(Eqh1/Ex2) SZn~15(nyjinghs;)
= ZS(h1,12))
=S(¢1/92).

where we have used the homogeneity

(7.8) S(A¢[A)=1S(¢/).

(2) Commutative ;. Let A, be the increasing net of all finite
dimensional subalgebra of 9t;,. By Lemma 3, we have

(7.9) lim S(Eggu,(¢1+262)/ Exgu.(¢2))
=S(¢1+epa/Ps).

By the previous case, we have

(7.10) S(Eq(¢1+£¢2)/Ex(¢2))

S S(Eggu, (@1 +e02)/Eqge,($2))
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for all o« and hence

(7.11) S(Eq¢,+eEnd,/Eqd,)
=S(¢1+ed,/ds).

By taking the limit e— 40, we obtain the monotonicity by Lemma 2.
(3) Finite M;: Let

(7.12) P M=y0", yeRy

where ¥ is a o-weakly continuous linear functional on 9, and x'
denotes the unique conditional expectation from N, to its center 3=9%,
nNRW, satisfying (y1y)1=(y,y)". It is known ([9], Chapter 3, §5,
Lemma 4 along with Radon Nikodym Theorem) that for any &¢>0 and
finite number of y,, there exist inner automorphisms «; of 9, and 4;=0
with Z4;=1 satisfying | py,—ZA 0] <e for all k.

The b-mapping extends to a normal expectation from NI, to
N®I3 satisfying (x®y)'=x®y". Correspondingly p is defined for func-
tionals on N@W;. Since products of normal linear functionals are total
in norm topology, we also can approximate p¢, by XA;p,ex; simultane-
ously for k=1, 2, where a; is an inner automorphism by elements in 9.
By lower semi-continuity, convexity, and Lemma 5,

(7.13) S(po1/pd2) = l@s(z/lj¢1°aj/2}'j¢2°“j)
< lim 22;S(¢ 1005/ 00t )
=S5(¢1/¢2)-

By (31y2)'=(,y)" M, is in the centralizer of p¢, and p¢,. Since
LNM=NR®J, Lemma 4 implies

(7.14) S(p$1/p$:)=S(Eneg(pd1)/Engg(p$2))

= S(Esn®3¢ 1/Em®3 ¢2) 4

where @3 is elementwise invariant under 4-mapping and hence Eggg(pd)
=Eggg¢. By combining (7.13), (7.14) and the previous case (2), we
obtain the monotonicity for the present case.
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(4) General %,: Let y be a normal faithful positive linear func-
tional on M, (for example restriction of ¢, to M,). We first consider
9t, alone in a space $, with a cyclic and separating vector ¥ such that
(¥, yP)=y(y), yeN,. Let E, be the projection onto the subspace of
all 4y invariant vectors.

T
(7.15) lim (2T)‘1S Aigdi=E,
-T

T—o0

strongly. Hence
(7.16) p0)= lim (2T)" SfTa,W(y)dt eMm

is strongly convergent on ¥ and hence on 'Y and hence on &, by
the uniform boundedness. The mapping p, is the conditional expectation
from 9, to the centralizer 9t,=%NY relative to .

If ¢ <Ay for some A>0, then there exists y’ e such that

() =(¥, yy'?).

Then
1 (T (T
(7.17) a7 (@eay =,y " agyw)

converges in norm of linear functionals simultaneously for a finite number
of such ¢’s. Since ¢ satisfying ¢ <Ay for some 1 is norm dense, it
is possible to approximate ¢,op, simultaneously for a finite number of
¢r. by ZA¢ro0¥, where 2,20, ZA;=1. Hence the same holds for function-
als ¢, on NN, where we approximate ¢,o(:@p,) by Zide(:®c?)
with ¢ denoting the identity automorphism. Hence

(7.18) S(¢1°(:®py)/d22(:@py))
=5(¢1/¢5)-

On the other hand, N,=NY is a finite algebra with  as a trace.
By the previous case (3), we have

(7.19) S(Eq¢1/Eqd,) < S(Este®m{¢1° (5®P¢)}/Em®m2{¢z° (!®P.p)})
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where we have used Eg¢,=Egn{¢d;(:®p,)}.
We can complete our proof if we show

(7.20) S(Ex@n,{91°(:®py)} Exen,{$22(:®py)})

=5(¢1°(:®py)|d20:@p,) -

Noting that RN, is the set of o¥-invariant elements in N®NR, and that
both ¢4e(:®p,) are invariant under :®cY, teR, (7.20) follows from the
following:

Lemma 6. Let ¥ be a set of automorphisms of MM such that ¢,
and ¢, are both %-invariant, i.e. ¢og=q, for all ge¥%. Let R=M°
be the set of ¥-invariant elements of M. Then

(7.21) S(Es¢1/Exd2)=S5(¢1/¢2).

Proof. Let & and ¢ be given by (4.10) and (4.12). Then ¢ is
invariant under automorphisms g®: on MM, for all ge%. Hence
g®: commutes with ¢?. This implies that 9t®%i, which is the set of
(¢®¢)-invariant elements of MM, is of invariant as a set. By the
same proof as Lemma 4, we obtain (7.21).

§8. Monotonicity for Case 7

First we consider finite dimensional %M. Let E,,..., E, be the mini-
mal projections of the center of 9t satisfying 2E;=1. Since U={E,,...,
E,}"” is commutative, we have

(8.1 S(Eq,¢1/Eq,$2) =S(d1/¢2)

for A, =A"n M.

The algebra A, is a direct sum of U,E; and each U E; is a tensor
product (RE)@{(W nA,)E;}. Let ¢,; be the restriction of ¢, to UE;,
where E; is the identity. As in (7.5), we have

(8-2) S(¢1/¢2)=;S(¢lj/¢2j)'

(8.3) S(Em¢1/Esz¢2)=;S(Em,@u)/EmEj(‘pzj))-
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By case (ff), we have

(8.4) S(h1jl¢2) 2 S(Esip (91 )/Esip (D2,)) -

From (8.2), (8.3) and (8.4), we have monotonicity.

The case of general approximately finite algebra 9 can be deduced
from the case of finite dimensional 9t by using Lemmas 2 and 3 just
as in the proof of case f(2).

References

[11 Araki, H., Publ. RIMS, Kyoto Univ. 9 (1973), 165-209.

[2] ———, Commun. Math. Phys. 38 (1974), 1-10.

[3] ———, Pacific J. Math. 50 (1974), 309-354.

[4] ————, Commun. Math. Phys. 44 (1975), 1-7.

[5] ————, Recent developments in the theory of operator algebras and their

significance in theoretical physics. To appear in Proceedings of convegno sulle
algebre C* e loro applicazioni in Fisica Teorica, Rome, 1975.

[6] ——, Relative entropy and its applications. To appear in Proceedings
of International colloquium on marhemarical methods of quantum field theory,
1975, Marseille.

[7] —————, Inequalities in von Neumann algebras. To appear in Proceedings
of Vingtieme rencontre entre physiciens theoriciens et mathematiciens, May 1975,
Strasbourg.

[81 Connes, A., Ann. Scient. Ecole Norm. Sup. 4e série 6 (1973), 133-252.

[9]1 Dixmier, J., Les algébres d’operateur dans I'espacc hilbertien. Gauthier Villars,
Paris, 1969.

[10] Kaplansky, 1., Pacific J. Math. 1 (1951), 227-232.

[11] Lieb, E.H., Advances in Math. 11 (1973), 267-288.

[12] Lindblad, G., Comnun. Math. Phys. 39 (1974), 111-119.

[13] Takesaki, M., Tomita’s theory of modular Hilbert albegras and its applications.
Springer Verlag, 1970.

[14] Umegaki, H., Kodai Math. Sem. Rep. 14 (1962), 59-85.

[15] Woronowicz, S. L., Reports on Math. Phys. 6 (1975), 487-495.






