Holographic Entanglement Entropy

AdS/CFT

Strings/M-theory on $\text{AdS}_{d+1} \times F$ \(\xrightarrow{L_{\text{AdS}} \gg L_{\text{Planck}} \text{ (i.e., } g \to 0)}\) $\xrightarrow{\text{Large } \mathcal{N}}$ CFT

Supergravity $\xrightarrow{\text{holographic CFTd}}$

RT formula

- Formula for leading order piece of entanglement entropy
- Applies to static or $t \to -t$ slice Σ
- People usually ignore F but you don't have to!
- Find minimal area surface anchored to E that divides R from \overline{R}

Simplest example: take $\text{CFT} \times \text{CFT}$ workable

<table>
<thead>
<tr>
<th>d</th>
<th>CFT</th>
<th>Bulk</th>
<th>S_{strong}</th>
<th>S_{weak}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>D1-D5</td>
<td>$\text{AdS}_3 \times S_3 \times T_4$</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>ABJM</td>
<td>$\text{AdS}_4 \times S_7 (M)$</td>
<td>$N^{3/2}$</td>
<td>$N^2 (N)$</td>
</tr>
<tr>
<td>4</td>
<td>SYM</td>
<td>$\text{AdS}_5 \times S_5$ (JIB)</td>
<td>N^2</td>
<td>N^2</td>
</tr>
<tr>
<td>6</td>
<td>$(2,0)$ model</td>
<td>$\text{AdS}_7 \times S_4 (M)$</td>
<td>$N^3 (N)$ $\sim N^2 (IR)$</td>
<td>$N^2 (IR)$</td>
</tr>
</tbody>
</table>

C, N protected by SUSY

EVIDENCE FROM UNIVERSAL PIECES & CONSISTENCY (e.g. SSA)

LM PATH INTEGRAL
Can exist multiple local minima

e.g. consider region \mathcal{R} consisting of 2 disjoint intervals for $d=2$

\[S_{AB} = S_A + S_B \]
\[I_{A,B} = O(1) \]

let each be angle θ wide

\[S_{AB} < S_A + S_B \]
\[I_{A,B} = O(N^2) \]

phase transition sharp @ $O(N^2)$
but smoothed out @ finite N

PICTURE:
local Rindler tempering leads to deconfinement
long intervals
\[I_{A,B} ^ {\text{long}} \sim O(N^2) \]
short intervals
\[I_{A,B} ^ {\text{short}} \sim O(1) \]

Homology constraint crucial

related to deconfinement phase transition

low $T$$\rightarrow$ AdS

high $T$$\rightarrow$ confinement

makes it difficult to resolve
sub-AdS structure w/ RT

[MENTION 1ST LAW STUFF?]
Strong Subadditivity Proof

Very difficult to prove in q info

Easy holographically

Uses global minimization

Important consistency check

Monogamy of Mutual Info (Hayden-Hendrickson-Moloney)

\[S(AB) + S(BC) + S(CA) \geq S(A) + S(B) + S(C) + S(ABC) \]

Only true holographically

Can be violated for general QM systems
COVARIANT VERSION

HRT
- Spacetime dynamical
- E is time dependent

Min surface makes no sense in spacetime

look for extremal surface

\[S_{\text{ext}} = \frac{A \left[\min \, \text{ext} \,(R) \right]}{4 \, G \cdot t} \]

still required to be homologous

Equivalent Maximin formulation:

1. On each Cauchy slice \(\Sigma \) that passes through \(E \)
2. Min area \(\Sigma \)
3. Nontrivial = NEC
 - Null curvature condition \(R_{\mu \nu \lambda \delta} g^{\mu \delta} g^{\nu \lambda} \geq 0 \)
 - Ads-hypersurfaces

\[\text{Maximin}(R) = \min \, \text{ext} \,(R) \]

Easier to prove global results like SSA & HTHM

Can also prove that if BDA, ext surface lies deeper in bulk...