Problem Set #1

. Suppose that p = e ?H is a thermal state in an ordinary Hilbert space, where
H is any operator for which the resulting state is normalizable. Show that this
state satisfies the KMS condition for any operators A, B:

(A(T)B), = (BA(T +10)), (1)

where A(7) represents the time translation of the operator A, and (BA(z)), is
analytic in the strip 0 > Im(z) > .

(This exercise justifies the use of the KMS condition as the definition of a
thermal state in more exotic contexts, such as type III von Neumann algebras.)

. Consider the following properties of the von Neumann entropy described during
the lecture:

i) Positivity: S(p) >0,

ii) Invariance under Unitaries: S(UpU') = S(p),

Additivity under Tensor Product: S(ps ® pg) = S(pa) + S(ps),
Triangle Identity: S(A) + S(B) > S(AB) > |S(A) — S(B)|,
Continuous (for finite dimensional Hilbert spaces),

{Strong Subadditivity: S(AB) + S(BC) > S(ABC) + S(B)},
Concavity: S(Ap+ (1 —X)o) > AS(p) + (1 — N)S(0),

Chain Rule: If p = ®;\;p; (block diagonal), then

S(6) = (3(p0)) — Xy Ailn s

(a) Show that Strong Subadditivity implies Weak Monotonicity: S(AB) +
S(BC) > S(A) + S(C) by assuming the existence of a 4th system D such
that ABC'D is pure, and using the fact that S(R) = S(R).

(b) See how many of the properties you can prove on your own. (But don’t try
too hard for Strong Subadditivity, whose proof is very difficult!) For the proof
of Araki-Lieb, try using the purifier trick described in (a). Note that Concavity
can be proven from Subadditivity and the Chain Rule.
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(¢) Determine which of these properties are also obeyed by the Renyi entropy
Sy = ﬁ In tr(p™), which limits to the von Neumann entropy as n — 1. For sim-
plicity you may wish to focus on the case n > 1 and finite dimensional Hilbert
spaces. Note: the simplest counterexample to Concavity involves a Hilbert space
with a large number of states.
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