Relative Entropy of States of von Neumann Algebras

By
Huzihiro Araki

Abstract

Relative entropy of two states of a von Neumann algebra is defined in terms of the relative modular operator. The strict positivity, lower semicontinuity, convexity and monotonicity of relative entropy are proved. The Wigner-Yanase-Dyson-Lieb concavity is also proved for general von Neumann algebra.

§1. Introduction

A relative entropy (also called relative information, see [12], [14]) is a useful tool in the study of equilibrium states of lattice systems ([2], [4], [6]). For normal faithful positive linear functionals ϕ and ψ of a von Neumann algebra \mathfrak{M}, the relative entropy is defined by

$$
\begin{equation*}
S(\phi / \psi) \equiv-\left(\Psi,\left(\log \Delta_{\Phi, \Psi}\right) \Psi\right) \tag{1.1}
\end{equation*}
$$

where $\Delta_{\Phi, \Psi}$ is the relative modular operator of cyclic and separating vector representatives Φ and Ψ of ϕ and ψ, and (1.1) is independent of the choice of vector representatives Φ and Ψ. The definition (1.1) coincides with usual definition

$$
\begin{equation*}
S\left(\rho_{\phi} / \rho_{\psi}\right)=\operatorname{tr}\left(\rho_{\psi} \log \rho_{\psi}\right)-\operatorname{tr}\left(\rho_{\psi} \log \rho_{\phi}\right) \tag{1.2}
\end{equation*}
$$

when \mathfrak{M} is finite dimensional and ρ_{ϕ} and ρ_{ψ} are density matrices for ϕ and ψ.

We shall prove the following properties of $S(\phi / \psi)$.
(1) Strict positivity: If $\phi(\mathbb{1})=\psi(\mathbb{1})$, then

[^0]\[

$$
\begin{equation*}
S(\phi \mid \psi) \geqq 0 \tag{1.3}
\end{equation*}
$$

\]

and the equality holds if and only if $\phi=\psi$.
(2) Lower semi-continuity: If $\lim _{n}\left\|\phi_{n}-\phi\right\|=\lim _{n}\left\|\psi_{n}-\psi\right\|=0$,

$$
\begin{equation*}
\varliminf \underline{\varliminf} S\left(\phi_{n} / \psi_{n}\right) \geqq S(\phi / \psi) . \tag{1.4}
\end{equation*}
$$

(3) Convexity: $S(\phi / \psi)$ is jointly convex in ϕ and ψ. Namely

$$
\begin{equation*}
\Sigma \lambda_{i} S\left(\phi_{i} / \psi_{i}\right) \geqq S\left(\Sigma \lambda_{i} \phi_{i} / \Sigma \lambda_{i} \psi_{i}\right) \tag{1.5}
\end{equation*}
$$

if $\lambda_{i} \geqq 0$ and $\Sigma \lambda_{i}=1$.
(4) Monotonicity:

$$
\begin{equation*}
S\left(E_{\Re} \phi / E_{\Re 彐} \psi\right) \leqq S(\phi / \psi) \tag{1.6}
\end{equation*}
$$

where $E_{\Re} \phi$ and $E_{\Re} \psi$ denote the restrictions of ϕ and ψ to a von Neumann subalgebra \mathfrak{N} of \mathfrak{M}, and \mathfrak{M} is assumed to be one of the following:
(Case α) $\mathfrak{A}=\mathfrak{A}^{\prime} \cap \mathfrak{M}$ for a finite dimensional abelian von Neumann subalgebra \mathfrak{A} of \mathfrak{M}.
(Case β) $\quad \mathfrak{M}=\mathfrak{N} \otimes \mathfrak{N}_{1}$.
(Case γ) \mathfrak{N} is approximately finite (i.e. generated by an increasing net of finite dimensional subalgebras). This case includes any finite dimensional \mathfrak{N}.

In the proof of convexity, we prove that

$$
\begin{equation*}
\left\|\left(\Lambda_{\Phi, \Psi}\right)^{p / 2} x \Psi\right\|^{2} \tag{1.7}
\end{equation*}
$$

is jointly concave in ϕ and ψ for fixed $x \in \mathfrak{M}$ and $p \in[0,1]$. (Wigner-Yanase-Dyson-Lieb concavity.)

For connection of these general results with finite matrix inequalities, see [7].

§ 2. Strict Positivity and Lower Semi-Continuity

We shall take Φ and Ψ to be unique vector representatives of ϕ and ψ in a fixed natural positive cone $V=V_{\Psi}=V_{\Phi}$ ([3]). Then

$$
\begin{equation*}
\Phi=\left(\Delta_{\Phi, \Psi}\right)^{1 / 2} \Psi . \tag{2.1}
\end{equation*}
$$

Let E_{λ} be the spectral projections of $\Delta_{\Phi, \Psi}$. Then

$$
\begin{equation*}
S(\phi / \psi)=-\int_{0}^{\infty} \log \lambda \mathrm{d}\left(\Psi, E_{\lambda} \Psi\right) \tag{2.2}
\end{equation*}
$$

By (2.1),

$$
\begin{equation*}
\int_{0}^{\infty} \lambda \mathrm{d}\left(\Psi, E_{\lambda} \Psi\right)=\phi(\mathbb{1})<\infty . \tag{2.3}
\end{equation*}
$$

Hence (2.2) is definite and gives either real number or $+\infty$.
Since the numerical function $\log \alpha$ is concave,

$$
\begin{equation*}
\int_{0}^{\infty} \log \alpha(\lambda) \mathrm{d} \mu(\lambda) \leqq \log \int_{0}^{\infty} \alpha(\lambda) \mathrm{d} \mu(\lambda) \tag{2.4}
\end{equation*}
$$

for any positive measurable function $\alpha(\lambda)$ of $\lambda \in(0, \infty)$ and any probability measure μ on $(0, \infty)$. By taking $\alpha(\lambda)=\lambda^{1 / 2}$ and $\mathrm{d} \mu(\lambda)=\mathrm{d}\left(\Psi, E_{\lambda} \Psi\right) /$ $\|\Psi\|^{2}$, the inequality (2.4) with $\log \alpha(\lambda)=(\log \lambda) / 2$ yields

$$
\begin{equation*}
S(\phi / \psi) \geqq-2 \psi(\mathbb{1}) \log \{(\Phi, \Psi) / \psi(\mathbb{1})\} . \tag{2.5}
\end{equation*}
$$

By Schwartz inequality,

$$
\begin{equation*}
(\Phi, \Psi) \leqq\|\Phi\|\|\Psi\|=(\phi(\mathbb{1}) \psi(\mathbb{1}))^{1 / 2} \tag{2.6}
\end{equation*}
$$

Hence the right-hand side of (2.5) is non-negative when $\phi(\mathbb{1})=\psi(\mathbb{1})$ and the equality holds only if the equality holds in (2.6), namely only if $\Phi=\Psi$. This proves the strict positivity. (An alternative proof follows from $\log \lambda \leqq \lambda-1$.)

To prove lower semicontinuity, let ϕ_{n}, ϕ, ψ_{n} and ψ be normal faithful positive linear functionals of \mathfrak{M} such that

$$
\begin{equation*}
\lim _{n}\left\|\phi_{n}-\phi\right\|=0, \quad \lim _{n}\left\|\psi_{n}-\psi\right\|=0 \tag{2.7}
\end{equation*}
$$

Let Φ_{n}, Φ, Ψ_{n} and Ψ be vector representatives of ϕ_{n}, ϕ, ψ_{n} and ψ in V. Then

$$
\begin{equation*}
\lim _{n}\left\|\Phi_{n}-\Phi\right\|=0, \quad \lim _{n}\left\|\Psi_{n}-\Psi\right\|=0 \tag{2.8}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\lim _{n}\left(\mathbb{1}+\Delta_{\Phi_{n}, \Psi_{n}}^{1 / 2}\right)^{-1}=\left(\mathbb{1}+\Delta_{\Phi}^{1 / 2}\right)^{-1} \tag{2.9}
\end{equation*}
$$

strongly. (See Theorem 4(8) in [3] and Remark 2 at the end of section 4.) Hence

$$
\begin{equation*}
\lim _{n} f\left(\Delta_{\Phi_{n}, \Psi_{n}}\right)=f\left(\Delta_{\Phi, \Psi}\right) \tag{2.10}
\end{equation*}
$$

for any bounded continuous function f. (See [10], Lemma 2.)
Let $\mathscr{N}=3,4, \ldots$ and

$$
f_{N}(\lambda)= \begin{cases}\log N & \text { if } \lambda \geqq \log N, \tag{2.11}\\ -\log N & \text { if } \lambda \leqq-\log N, \\ \lambda & \text { otherwise. }\end{cases}
$$

Let E_{λ}^{n} be the spectral projection of $\Delta_{\Phi_{n}, \Psi_{n}}$. Since

$$
\int_{0}^{\infty} \lambda \mathrm{d}\left(\Psi_{n}, E_{\lambda}^{n} \Psi_{n}\right)=\left\|\Phi_{n}\right\|^{2}=\phi_{n}(\mathbb{1}),
$$

we have

$$
\begin{align*}
0 & \leqq \int_{N}^{\infty}(\log \lambda-\log N) \mathrm{d}\left(\Psi_{n}, E_{\lambda}^{n} \Psi_{n}\right) \tag{2.12}\\
& =\int_{N}^{\infty}\left\{\lambda^{-1} \log (\lambda / N)\right\} \lambda \mathrm{d}\left(\Psi_{n}, E_{\lambda}^{n} \Psi_{n}\right) \\
& \leqq \phi_{n}(\mathbb{1})(e N)^{-1}
\end{align*}
$$

Since

$$
\begin{equation*}
\int_{0}^{1 / N}(\log \lambda+\log N) \mathrm{d}\left(\Psi_{n}, E_{\lambda}^{n} \Psi_{n}\right) \leqq 0 \tag{2.13}
\end{equation*}
$$

we have

$$
\begin{equation*}
S\left(\phi_{n} / \psi_{n}\right) \geqq-\left(\Psi_{n}, f_{N}\left(\log \Delta_{\Phi_{n}, \Psi_{n}}\right) \Psi_{n}\right)-\phi_{n}(\mathbb{1})(e N)^{-1} \tag{2.14}
\end{equation*}
$$

By using (2.10) with $f(x)=f_{N}(\log x)$, we obtain from (2.14)

$$
\begin{equation*}
\underline{\varliminf} S\left(\phi_{n} / \psi_{n}\right) \geqq-\left(\Psi, f_{N}\left(\log \Delta_{\Phi, \Psi}\right) \Psi\right)-\phi(\mathbb{1})(e N)^{-1} \tag{2.15}
\end{equation*}
$$

Since the right-hand side of (2.15) tends to $S(\phi / \psi)$ as $\mathcal{N} \rightarrow \infty$, we have (1.4).

§3. Unitary Cocycle

We need some properties of unitary cocycle in the proof of WYDL concavity. The unitary cocycle is defined by

$$
\begin{equation*}
(\mathrm{D} \phi: \mathrm{D} \psi)_{t}=\left(\Delta_{\Phi, \Psi}\right)^{i t} \Delta_{\Psi}^{-i t} . \tag{3.1}
\end{equation*}
$$

It is unitary elements of \mathfrak{M} continuously depending on real parameter t and satisfying the following equations ([8], Lemmas 1.2.2, 1.2.3 and Theorem 1.2.4):
$\left(\mathrm{D} \phi_{1}: \mathrm{D} \phi_{2}\right)_{t}\left(\mathrm{D} \phi_{2}: \mathrm{D} \phi_{3}\right)_{t}=\left(\mathrm{D} \phi_{1}: \mathrm{D} \phi_{3}\right)_{t}$,
$(\mathrm{D} \phi: \mathrm{D} \psi)_{t}=(\mathrm{D} \psi: \mathrm{D} \phi)_{t}^{*}$,
$(\mathrm{D} \phi: \mathrm{D} \psi)_{t} \sigma_{t}^{\psi}(x)(\mathrm{D} \phi: \mathrm{D} \psi)_{t}^{*}=\sigma_{t}^{\phi}(x)$,
$(\mathrm{D} \phi: \mathrm{D} \psi)_{s} \sigma_{s}^{\psi}\left\{(\mathrm{D} \phi: \mathrm{D} \psi)_{t}\right\}=(\mathrm{D} \phi: \mathrm{D} \psi)_{s+t}$.
We now start deriving some equations useful in our proof of WYDL concavity (cf. [5]).

If $\lambda \phi \leqq \psi$ with $\lambda>0$ (and only in such a case), $(\mathrm{D} \phi: \mathrm{D} \psi)_{t}$ has an analytic continuation in t to the strip $0 \geqq \operatorname{Im} t \geqq-1 / 2$. In other words there exists an \mathfrak{M}-valued function $\alpha_{\phi}(z)$ of z in the tube region

$$
\begin{equation*}
\{z ; 0 \leqq \operatorname{Re} z \leqq 1\} \tag{3.6}
\end{equation*}
$$

such that $\alpha_{\phi}(z)$ is strongly continuous in z on (3.6), holomorphic in z in the interior of (3.6), bounded (by $\lambda^{-\operatorname{Re} z / 2}$) and satisfies

$$
\begin{align*}
& \alpha_{\phi}(2 i t)=(\mathrm{D} \phi: \mathrm{D} \psi)_{t}, \tag{3.7}\\
& \alpha_{\phi}(z) \Psi=\left(\Delta_{\Phi, \Psi}\right)^{z / 2} \Psi \tag{3.8}\\
& \alpha_{\phi}(1) \Psi=\Phi . \tag{3.9}
\end{align*}
$$

(For later typographical convenience, we scaled t by $2 i$.)
The existence of such $\alpha_{\phi}(z)$ is seen as follows: First define $\alpha_{\phi}(z)$
on a dense set $\mathfrak{M}^{\prime} \Psi$ by

$$
\begin{equation*}
\alpha_{\phi}(z) x^{\prime} \Psi=x^{\prime}\left(\Lambda_{\Phi, \Psi}\right)^{z / 2} \Psi, \quad x^{\prime} \in \mathfrak{P}^{\prime} \tag{3.10}
\end{equation*}
$$

For $z=2 i t$,

$$
\begin{equation*}
\alpha_{\phi}(z) x^{\prime} \Psi=(\mathrm{D} \phi: \mathrm{D} \psi)_{t} x^{\prime} \Psi \tag{3.11}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\left\|\alpha_{\phi}(z) x^{\prime} \Psi\right\|=\left\|x^{\prime} \Psi\right\| . \tag{3.12}
\end{equation*}
$$

If (and only if) $\lambda^{2} \phi \leqq \psi$ for $\lambda>0$, there exists $A \in \mathfrak{M}$ satisfying $\|A\| \leqq \lambda^{-1 / 2}$ and $\Phi=A \Psi$ (Theorem 12(1) of [4]). Then

$$
\begin{aligned}
\Delta_{\Phi, \Psi}^{i t} \Phi & =\Delta_{\phi, \Psi}^{i t} A \Psi=\sigma_{t}^{\phi}(A) \Delta_{\Phi, \Psi}^{i t} \Psi \\
& =\sigma_{t}^{\phi}(A)(\mathrm{D} \phi: \mathrm{D} \psi)_{t} \Psi=(\mathrm{D} \phi: \mathrm{D} \psi)_{t} \sigma_{t}^{\psi}(A) \Psi
\end{aligned}
$$

Hence for $z=2 i t+1$,

$$
\begin{equation*}
\alpha_{\phi}(z) x^{\prime} \Psi=(\mathrm{D} \phi: \mathrm{D} \psi)_{t} \sigma_{t}^{\psi}(A) x^{\prime} \Psi \tag{3.13}
\end{equation*}
$$

due to (2.1) and hence

$$
\begin{equation*}
\left\|\alpha_{\phi}(z) x^{\prime} \Psi\right\| \leqq \lambda^{-1 / 2}\left\|x^{\prime} \Psi\right\| . \tag{3.14}
\end{equation*}
$$

Since $\left(\Delta_{\Phi, \Psi}\right)^{z / 2} \Psi$ is holomorphic in z for $\operatorname{Re} z \in(0,1)$ and continuous for $\operatorname{Re} z \in[0,1]$ due to $\Psi \in D\left(\Delta_{\Phi}^{1 / 2}\right)$ (see (2.1)), we have

$$
\begin{align*}
\left\|\alpha_{\phi}(z)\right\| & =\sup _{\|f\|=1,\left\|x^{\prime} \Psi\right\|=1}\left|\left(f, \alpha_{\phi}(z) x^{\prime} \Psi\right)\right| \tag{3.15}\\
& \leqq \lambda^{-\operatorname{Re} z / 2}
\end{align*}
$$

by three line theorem. The rest follows from the definition.
Since $\left(\Delta_{\Phi, \Psi}\right)^{1 / 2} \Psi=\Phi \in V$, we have

$$
\begin{equation*}
\Phi=\alpha_{\phi}(1) \Psi=J \alpha_{\phi}(1) \Psi=j\left(\alpha_{\phi}(1)\right) \Psi \tag{3.16}
\end{equation*}
$$

where J is the modular conjugation operator common to vectors in V.
The analytic continuation of the cocycle equation (3.5) yields

$$
\begin{equation*}
\alpha_{\phi}(2 i s) \sigma_{s}^{\psi}\left\{\alpha_{\phi}(z)\right\}=\alpha_{\phi}(z+2 i s) \tag{3.17}
\end{equation*}
$$

for real s and any z in (3.6). In particular

$$
\begin{equation*}
\alpha_{\phi}(1+i \theta) * \alpha_{\phi}(1+i \theta)=\sigma_{\theta / 2}^{\psi}\left\{\alpha_{\phi}(1) * \alpha_{\phi}(1)\right\} . \tag{3.18}
\end{equation*}
$$

The cocycle equation (3.5) can be rewritten as

$$
\begin{equation*}
(\mathrm{D} \phi: \mathrm{D} \psi)_{s}=(\mathrm{D} \phi: \mathrm{D} \psi)_{s+t} \sigma_{s}^{\psi}\left\{(\mathrm{D} \phi: \mathrm{D} \psi)_{t}^{*}\right\} . \tag{3.19}
\end{equation*}
$$

When we apply this on Ψ, the resulting equation has the following analytic continuation:

$$
\begin{equation*}
\alpha_{\phi}\left(z_{1}\right) \Psi=\alpha_{\phi}\left(z_{1}+z_{2}\right) \Delta \Psi_{\Psi}^{z / 2} \alpha_{\phi}\left(-\bar{z}_{2}\right)^{*} \Psi \tag{3.20}
\end{equation*}
$$

which reduces to (3.19) (applied on Ψ) when z_{1} and z_{2} are pure imaginary and hence holds when $z_{1},-\bar{z}_{2}$ and $z_{1}+z_{2}$ are all in (3.6). If we set $z_{1}=1$ and $z_{2}=z-1$ with $0 \leqq \operatorname{Re} z \leqq 1$, we obtain

$$
\begin{align*}
\Phi & =\alpha_{\phi}(1) \Psi=\alpha_{\phi}(z) \Delta_{\Psi}^{1 / 2} \alpha_{\phi}(1-\bar{z})^{*} \Psi \tag{3.21}\\
& =\alpha_{\phi}(z) j\left(\alpha_{\phi}(1-\bar{z})\right) \Psi
\end{align*}
$$

where $j(x)=J x J \in \mathfrak{M}^{\prime}$ for $x \in \mathfrak{M}$ and $j(x) \Psi=\Delta \Psi_{\Psi}^{1 / 2} x^{*} \Psi$.
By the intertwining property (3.4),

$$
\begin{equation*}
\alpha_{\phi}(z) \sigma_{-i z / 2}^{\psi}(x)=\sigma_{-i z / 2}(x) \alpha_{\phi}(z) \tag{3.22}
\end{equation*}
$$

holds for $z=2 i t$ and hence

$$
\begin{align*}
& \alpha_{\phi}(z) j\left(\alpha_{\phi}(1-\bar{z})\right) \Delta_{\Psi}^{z / 2} x \Psi \tag{3.23}\\
& =j\left(\alpha_{\phi}(1-\bar{z})\right) \alpha_{\phi}(z) \sigma_{-i z / 2}(x) \Psi \\
& = \\
& =j\left(\alpha_{\phi}(1-\bar{z})\right) \sigma_{-i z / 2}^{\phi}(x) \alpha_{\phi}(z) \Psi \\
& = \\
& =\sigma_{-i z / 2}^{\phi}(x) \alpha_{\phi}(z) j\left(\alpha_{\phi}(1-\bar{z})\right) \Psi \\
& \quad=\sigma_{-i z / 2}^{\phi}(x) \Phi=\Delta_{\Phi}^{z / 2} x \Phi,
\end{align*}
$$

where (3.21) is used. Since two extreme ends of this equation have analytic continuations in z in (3.6), the equation holds for such z. In particular, for $0 \leqq p \leqq 1$,

$$
\begin{equation*}
\alpha_{\phi}(p) j\left(\alpha_{\phi}(1-p)\right) \Delta_{\Psi}^{p / 2} x \Psi=\Delta_{\Phi}^{p / 2} x \Phi \tag{3.24}
\end{equation*}
$$

If ϕ and χ are normal faithful positive linear functionals and

$$
\begin{equation*}
\psi=\lambda \phi+(1-\lambda) \chi \tag{3.25}
\end{equation*}
$$

with $0<\lambda<1$, then $\psi \geqq \lambda \phi, \psi \geqq(1-\lambda) \chi$ with $\lambda>0$ and $1-\lambda>0$. By (3.16), we have

$$
\begin{equation*}
\phi(x)=(\Phi, x \Phi)=\left(\Psi, x j\left(\alpha_{\phi}(1) * \alpha_{\phi}(1)\right) \Psi\right) \tag{3.26}
\end{equation*}
$$

for $x \in \mathfrak{M}$. Similarly

$$
\chi(x)=\left(\Psi, x j\left(\alpha_{x}(1)^{*} \alpha_{x}(1)\right) \Psi\right) .
$$

Due to (3.25), we have

$$
\left(x^{*} \Psi, J\left\{\mathbb{1}-\lambda \alpha_{\phi}(1)^{*} \alpha_{\phi}(1)-(1-\lambda) \alpha_{\chi}(1)^{*} \alpha_{\chi}(1)\right\} \Psi\right)=0
$$

Since $x^{*} \Psi, x \in \mathfrak{M}$ are dense, $J^{2}=\mathbb{1}$ and Ψ is separating for \mathfrak{M},

$$
\begin{equation*}
\mathbb{1}=\lambda \alpha_{\phi}(1)^{*} \alpha_{\phi}(1)+(1-\lambda) \alpha_{\chi}(1) * \alpha_{\chi}(1) . \tag{3.27}
\end{equation*}
$$

If we use (3.18), we also obtain

$$
\begin{equation*}
\lambda \alpha_{\phi}(1+i \theta)^{*} \alpha_{\phi}(1+i \theta)+(1-\lambda) \alpha_{\chi}(1+i \theta)^{*} \alpha_{\chi}(1+i \theta)=\mathbb{1} . \tag{3.28}
\end{equation*}
$$

§4. WYDL Concavity and the Convexity of Relative Entropy
First we prove the concavity of

$$
\begin{equation*}
f_{p}(\phi, x) \equiv\left\|\Delta_{\Phi}^{p / 2} x \Phi\right\|^{2} \tag{4.1}
\end{equation*}
$$

in ϕ for any fixed $x \in \mathfrak{M}$ and $p \in[0,1]$. We use the proof technique of Lieb ([11], Theorem 1).

Let ϕ, χ, λ and ψ be as in the previous section. Our aim is to prove

$$
\begin{equation*}
\lambda f_{p}(\phi, x)+(1-\lambda) f_{p}(\chi, x) \leqq f_{p}(\psi, x) \tag{4.2}
\end{equation*}
$$

Consider

$$
\begin{align*}
& g(z)=\lambda T_{\phi}(z)+(1-\lambda) T_{\chi}(z), \tag{4.3}\\
& T_{\phi}(z) \equiv\left(\alpha_{\phi}(\bar{z}) j\left(\alpha_{\phi}(1-z)\right) \Delta_{\Psi}^{p / 2} x \Psi, \alpha_{\phi}(z) j\left(\alpha_{\phi}(1-\bar{z})\right) \Delta_{\Psi}^{p / 2} x \Psi\right)
\end{align*}
$$

Since $g(z)$ is holomorphic in z on (3.6), we have

$$
\begin{equation*}
|g(p)| \leqq \max \left\{\sup _{\theta}|g(i \theta)|, \sup _{\theta}|g(1+i \theta)|\right\} . \tag{4.5}
\end{equation*}
$$

By (3.24),

$$
\begin{equation*}
g(p)=\lambda f_{p}(\phi, x)+(1-\lambda) f_{p}(\chi, x) . \tag{4.6}
\end{equation*}
$$

By elementary inequalities,

$$
\begin{aligned}
\left|T_{\phi}(i \theta)\right| \leqq & (1 / 2)\left\{\left\|\alpha_{\phi}(-i \theta) j\left(\alpha_{\phi}(1-i \theta)\right) \Delta_{\Psi}^{p / 2} x \Psi\right\|^{2}\right. \\
& \left.+\left\|\alpha_{\phi}(i \theta) j\left(\alpha_{\phi}(1+i \theta)\right) \Delta_{\Psi}^{p / 2} x \Psi\right\|^{2}\right\} .
\end{aligned}
$$

By the unitarity of $\alpha_{\phi}(i \theta)$ and by (3.28), we have

$$
\begin{aligned}
& \lambda\left\|\alpha_{\phi}(i \theta) j\left(\alpha_{\phi}(1+i \theta)\right) \Delta{ }_{\Psi}^{p / 2} x \Psi\right\|^{2} \\
& \quad+(1-\lambda)\left\|\alpha_{\chi}(i \theta) j\left(\alpha_{\chi}(1+i \theta)\right) \Delta_{\Psi}^{p / 2}{ }^{2} \Psi\right\|^{2}=\left\|\Delta_{\Psi}^{p / 2} x \Psi\right\|^{2} .
\end{aligned}
$$

The other term is obtained by substitution of $-\theta$ into θ. Hence

$$
\begin{equation*}
|g(i \theta)| \leqq\left\|\Delta_{\psi}^{p / 2} x \Psi\right\|^{2}=f_{p}(\psi, x) . \tag{4.7}
\end{equation*}
$$

A similar calculation starting from

$$
\begin{aligned}
\left|T_{\phi}(1+i \theta)\right| \leqq & (1 / 2)\left\{\left\|j\left(\alpha_{\phi}(-i \theta)\right) \alpha_{\phi}(1-i \theta) \Delta_{\Psi}^{p / 2} x \Psi\right\|^{2}\right. \\
& \left.+\left\|j\left(\alpha_{\phi}(i \theta)\right) \alpha_{\phi}(1+i \theta) \Delta_{\Psi}^{p / 2} x \Psi\right\|^{2}\right\}
\end{aligned}
$$

yields

$$
\begin{equation*}
|g(1+i \theta)| \leqq f_{p}(\psi, x) \tag{4.8}
\end{equation*}
$$

Collecting (4.5), (4.6), (4.7) and (4.8) together, we obtain (4.2).
Next we prove the WYDL concavity. The passage from (4.1) to

$$
\begin{equation*}
f_{p}\left(\phi_{1}, \phi_{2}, x\right) \equiv\left\|\left(\Delta_{\Phi_{1}, \Phi_{2}}\right)^{p} x \Phi_{2}\right\|^{2} \tag{4.9}
\end{equation*}
$$

is by the 2×2 matrix trick ([8], Lemma 1.2.2).
Let \mathfrak{M}_{2} be a 2×2 full matrix algebra with a matrix unit $u_{i j}(i=1,2$; $j=1,2$) acting on a 4-dimensional space Ω with an orthonormal basis $e_{i j}(i=1,2 ; j=1,2)$ satisfying $u_{i j} e_{k l}=\delta_{j k} e_{i l}$. We consider the von Neu-
mann algebra $\mathfrak{M} \otimes \mathfrak{M}_{2}$ acting on $\mathfrak{S} \otimes \Omega$ instead of \mathfrak{M} acting on \mathfrak{S}. Let

$$
\begin{equation*}
\widehat{\Phi}=\Phi_{1} \otimes e_{11}+\Phi_{2} \otimes e_{22} \tag{4.10}
\end{equation*}
$$

where Φ_{1} and Φ_{2} are cyclic and separating vectors in a natural cone in \mathfrak{H} corresponding to functionals $\phi_{i}(x)=\left(\Phi_{i}, x \Phi_{i}\right), x \in \mathfrak{M}$. The vector $\hat{\Phi}$ is cyclic and separating and its modular operator yields the relative modular operator through the relation

$$
\begin{equation*}
\left(\Delta_{\hat{\Phi}}\right)^{p / 2}\left(x \otimes u_{12}\right) \hat{\Phi}=\left\{\left(\Delta_{\Phi_{1}, \Phi_{2}}\right)^{p / 2} x \Phi_{2}\right\} \otimes e_{12} \tag{4.11}
\end{equation*}
$$

where $x \in \mathfrak{M}$. Since

$$
\begin{equation*}
\hat{\phi}(\hat{x}) \equiv(\hat{\Phi}, \hat{x} \hat{\Phi})=\phi_{1}\left(x_{11}\right)+\phi_{2}\left(x_{22}\right) \tag{4.12}
\end{equation*}
$$

for

$$
\begin{equation*}
\hat{x}=\Sigma x_{i j} \otimes u_{i j}, \tag{4.13}
\end{equation*}
$$

$\hat{\phi}$ is linear in $\left(\phi_{1}, \phi_{2}\right)$. Hence the concavity of

$$
\begin{equation*}
\left\|\left(\Delta_{\hat{\Phi}}\right)^{p / 2}\left(x \otimes u_{12}\right) \hat{\Phi}\right\|^{2}=\left\|\left(\Delta_{\Phi_{1}, \Phi_{2}}\right)^{p / 2} x \Phi_{2}\right\|^{2} \tag{4.14}
\end{equation*}
$$

in $\hat{\phi}$ implies the WYDL concavity.
Let E_{λ} be the spectral projection of $\Delta_{\Phi, \Psi}$. The WYDL concavity just proved implies that

$$
\begin{equation*}
s_{p}(\phi / \psi) \equiv \int_{0}^{\infty} \lambda^{p} \mathrm{~d}\left(\Psi, E_{\lambda} \Psi\right) \tag{4.15}
\end{equation*}
$$

is concave jointly in ϕ and ψ, for fixed $p \in[0,1]$. If we prove

$$
\begin{equation*}
S(\phi / \psi)=\lim _{p \rightarrow+0} p^{-1}\left\{\psi(\mathbb{1})-s_{p}(\phi / \psi)\right\}, \tag{4.16}
\end{equation*}
$$

the convexity of relative entropy follows.
To prove (4.16), we note that

$$
\begin{equation*}
\lim _{p \rightarrow+0} p^{-1} \int_{\varepsilon}^{\infty}\left(1-\lambda^{p}\right) \mathrm{d}\left(\Psi, E_{\lambda} \Psi\right)=-\int_{\varepsilon}^{\infty} \log \lambda \mathrm{d}\left(\Psi, E_{\lambda} \Psi\right) \tag{4.17}
\end{equation*}
$$

due to (2.3) and

$$
p^{-1}\left|\lambda^{p}-1-p \log \lambda\right| \leqq(p / 2) \lambda^{p}(\log \lambda)^{2}
$$

for $\lambda \geqq 1$ and $p>0$. Since $1-\lambda^{p} \geqq 0$ for $\lambda \leqq 1$, (4.17) is a lower bound for the inferior limit of $p^{-1}\left\{\psi(\mathbb{1})-s_{p}(\phi / \psi)\right\}$ for $\varepsilon \leqq 1$. Hence (4.16) holds if $S(\phi / \psi)=\infty$. Since

$$
0 \leqq p^{-1}\left(1-\lambda^{p}\right) \leqq-\log \lambda
$$

for $0<\lambda \leqq 1$ and $p>0$,

$$
p^{-1} \int_{0}^{\varepsilon}\left(1-\lambda^{p}\right) \mathrm{d}\left(\Psi, E_{\lambda} \Psi\right) \leqq-\int_{0}^{\varepsilon} \log \lambda \mathrm{d}\left(\Psi, E_{\lambda} \Psi\right)
$$

tends to 0 as $\varepsilon \rightarrow 0$ uniformly in p if $S(\phi / \psi)<\infty$. Hence (4.17) implies (4.16) also for this case.

Remark 1. As a special case of WYDL concavity with $p=1 / 2$, we have a result of Woronowicz [15] that

$$
\begin{align*}
& (\Phi, x j(x) \Psi)=\left(J x^{*} \Phi, x \Psi^{\prime}\right) \tag{4.18}\\
& \quad=\left(\Delta_{\Phi, \Psi}^{1 / 2} x \Psi, x \Psi\right)=\left\|\Delta_{\Phi}^{1 / 4}, \Psi \Psi\right\|^{2}
\end{align*}
$$

is concave jointly in ϕ and ψ. For $x=1$, it implies the concavity of (Φ, Ψ) in (ϕ, ψ). This implies the concavity of $\phi \rightarrow \xi(\phi)=\Phi$ in the sense that

$$
\begin{equation*}
\xi\left(\lambda \phi_{1}+(1-\lambda) \phi_{2}\right)-\lambda \xi\left(\phi_{1}\right)-(1-\lambda) \xi\left(\phi_{2}\right) \in V \tag{4.19}
\end{equation*}
$$

because the set of $\xi(\psi)=\Psi$ is V and V is selfdual.

Remark 2. If (2.7) and hence (2.8) hold, then

$$
\begin{equation*}
\lim \left\|\hat{\Phi}_{n}-\hat{\Phi}\right\|=0 \tag{4.20}
\end{equation*}
$$

where $\hat{\Phi}_{n}$ and $\hat{\Phi}$ are defined by equation (4.10) where Φ_{1} is replaced by Φ_{n} or Φ and Φ_{2} is replaced by Ψ_{n} or Ψ. By the proof of Theorem 10 in [3],

$$
\begin{equation*}
\lim _{n}\left(\mathbb{1}+\Delta_{\tilde{\Phi}_{n}}^{1 / 2}\right)^{-1}=\left(\mathbb{1}+\Delta_{\tilde{\Phi}}^{1 / 2}\right)^{-1} . \tag{4.21}
\end{equation*}
$$

The subspace $\mathfrak{G} \otimes e_{12}$ of $\mathfrak{G} \otimes \mathfrak{R}$ is invariant under $\left(\mathbb{1}+\Delta_{\tilde{\Phi}_{n}}^{1 / 2}\right)^{-1}$ and $\left(\mathbb{1}+\Delta_{\tilde{\Phi}}^{1 / 2}\right)^{-1}$ and their restrictions to this space are

$$
\begin{aligned}
& \left(\mathbb{1}+\Delta_{\dot{\Phi}}^{1 / 2}\right)^{-1}\left(f \otimes e_{12}\right)=\left\{\left(\mathbb{1}+\Delta_{\Phi}^{1 / 2}\right) f\right\} \otimes e_{12}, \\
& \left(\mathbb{1}+\Delta_{\Phi_{n}}^{1 / 2}\right)^{-1}\left(f \otimes e_{12}\right)=\left\{\left(\mathbb{1}+\Delta_{\Phi_{n}, \Psi_{n}}^{\prime / 2}\right) f\right\} \otimes e_{12} .
\end{aligned}
$$

Hence (2.9) holds.
Remark 3. From the 2×2 matrix method above, we can derive the following useful formula. Let $\lambda \phi_{1} \geqq \phi_{2}$ for some $\lambda \geqq 0$. In this case there exists $A \in \mathfrak{M}$ such that $\sigma_{t}^{\phi_{1}}(A)$ has an analytic continuation for $0 \leqq \operatorname{Im} t \leqq 1 / 2$ with $\sigma_{i / 4}^{\phi_{1}}(A) \geqq 0,\|A\| \leqq \lambda^{1 / 2}$ and

$$
\begin{equation*}
\phi_{2}(x)=\phi_{1}\left(A^{*} x A\right) \tag{4.22}
\end{equation*}
$$

due to Theorem 12(1) and Theorem 14(5) of [3]. (The analyticity and positivity condition are equivalent to $A \Phi_{1} \in V$.) We can then prove the formula

$$
\begin{equation*}
\sigma_{i / 2}^{\phi_{2}}\left(u_{12}\right)=A^{*} u_{12} \tag{4.23}
\end{equation*}
$$

as follows.
Let $\Phi_{1}, \Phi_{2}, \hat{\Phi}$ be constructed as before. Let \hat{J} be the modular conjugation operator for $\hat{\Phi}$. Then $\hat{J}\left(f \otimes e_{i j}\right)=J f \otimes e_{j i}$ (for example by Lemma 6.1 of [1]). Since $\hat{J} \Delta_{\hat{\Phi}} \hat{J}=\Delta_{\hat{\Phi}}^{-1}$, we have

$$
\begin{equation*}
\Delta_{\Phi_{1}, \phi_{2}}^{1 / 2}=J \Delta_{\Phi_{2}, \Phi_{1}}^{1 / 2} J . \tag{4.24}
\end{equation*}
$$

Hence

$$
\begin{align*}
\Delta_{\Phi_{1}, \Phi_{2}}^{1 / 2} \Phi_{2} & =J \Delta_{\Phi_{2}, \Phi_{1}}^{1 / 2} \Phi_{2}=J \Delta_{\Phi_{2}, \Phi_{1}}^{1 / 2} A \Phi_{1} \tag{4.25}\\
& =A^{*} \Phi_{2},
\end{align*}
$$

and

$$
\begin{align*}
\Delta_{\hat{\Phi}}^{-1 / 2} u_{12} \hat{\Phi} & =\left(\Delta_{\Phi_{1}, \Phi_{2}}^{-1 / 2} \Phi_{2}\right) \otimes e_{12} \tag{4.26}\\
& =A^{*} \Phi_{2} \otimes e_{12}=A^{*} u_{12} \hat{\Phi} .
\end{align*}
$$

This implies that $\sigma_{i}^{\phi}\left(u_{12}\right)$ has an analytic continuation $\sigma_{z}^{\Phi}\left(u_{12}\right) \in \mathfrak{M}$ for $0 \leqq \operatorname{Im} z \leqq 1 / 2$ satisfying

$$
\begin{equation*}
\sigma_{\tilde{\Phi}}^{\hat{\Phi}}\left(u_{12}\right) y^{\prime} \hat{\Phi}=y^{\prime} \Delta_{\hat{\Phi}}^{i z} u_{12} \hat{\Phi}, \quad y^{\prime} \in \mathfrak{M} \tag{4.27}
\end{equation*}
$$

and (4.23) by Lemma 6 of [3].

§5. Some Continuity of Relative Entropy

We need the monotonicity of $\left(\mathbb{1}+\Delta_{\Phi, \Psi}\right)^{-1}$ in ϕ :
Lemma 1. If $\lambda_{1} \phi_{1} \geqq \lambda_{2} \phi_{2}$ for $\lambda_{1}>0, \lambda_{2}>0$, then

$$
\begin{equation*}
\left(\lambda+\lambda_{1} \Delta_{\mathscr{L}_{1}, \Psi}\right)^{-1} \leqq\left(\lambda+\lambda_{2} \Delta_{\Phi_{2}, \Psi}\right)^{-1} \tag{5.1}
\end{equation*}
$$

for any $\lambda>0$.
Proof. For $x \in \mathfrak{M}$, we have

$$
\begin{align*}
&\left\|\left(\lambda+\lambda_{1} \Delta_{\Phi_{1}, \Psi}\right)^{1 / 2} x \Psi\right\|^{2}-\left\|\left(\lambda+\lambda_{2} \Delta_{\Phi_{2}, \Psi}\right)^{1 / 2} x \Psi\right\|^{2} \tag{5.2}\\
&=\lambda_{1} \phi_{1}\left(x x^{*}\right)-\lambda_{2} \phi_{2}\left(x x^{*}\right) \geqq 0,
\end{align*}
$$

where we have used

$$
\begin{aligned}
& \left\|\left(\lambda+\lambda_{j} \Delta_{\Phi, \Psi}\right)^{1 / 2} x \Psi\right\|^{2}=\int\left(\lambda+\lambda_{j} t\right) \mathrm{d}\left(x \Psi, E_{t} x \Psi\right) \\
& \quad=\lambda\|x \Psi\|^{2}+\lambda_{j}\left\|\Delta_{\Phi}^{1 / 2} x \Psi\right\|^{2}=\lambda\|x \Psi\|^{2}+\lambda_{j}\left\|x^{*} \Phi\right\|^{2}
\end{aligned}
$$

for $\Delta_{\Phi, \Psi}=\int t \mathrm{~d} E_{t}$. Since $\mathfrak{M i \Psi}$ is the core of $\Delta_{\Phi_{1}, \Psi}^{1 / 2}$, (5.2) implies that the domain of $\left(\lambda+\lambda_{1} \Delta_{\Phi_{1}, \Psi}\right)^{1 / 2}$ is contained in that of $\left(\lambda+\lambda_{2} \Delta_{\Phi_{2}, \Psi}\right)^{1 / 2}$ and

$$
\left\|\left(\lambda+\lambda_{1} \Delta_{\Phi_{1}, \Psi}\right)^{1 / 2} f\right\|^{2} \geqq\left\|\left(\lambda+\lambda_{2} \Delta_{\Phi_{2}, \Psi}\right)^{1 / 2} f\right\|^{2}
$$

for all f in the domain of $\left(\lambda+\lambda_{1} \Delta_{\left.\Phi_{1}, \Psi\right)^{1 / 2}}\right.$. For any $g \in \mathfrak{H}$, we take f $=\left(\lambda+\lambda_{1} \Delta_{\Phi_{1}, \Psi}\right)^{-1 / 2} g$ and we find

$$
\left\|\left(\lambda+\lambda_{2} \Delta_{\Phi_{2}, \Psi}\right)^{1 / 2}\left(\lambda+\lambda_{1} \Delta_{\Phi_{1}, \Psi}\right)^{-1 / 2} g\right\| \leqq\|g\| .
$$

Hence

$$
A \equiv\left(\lambda+\lambda_{2} \Delta_{\Phi_{2}, \Psi}\right)^{1 / 2}\left(\lambda+\lambda_{1} \Delta_{\Phi_{1}, \Psi}\right)^{-1 / 2}
$$

satisfies $\|A\| \leqq 1$. For $f=\left(\lambda+\lambda_{2} \Delta_{\Phi_{2}, \Psi}\right)^{-1 / 2} h$ with any $h \in \mathfrak{H}$, we have

$$
\left\|\left(\lambda+\lambda_{2} \Delta_{\Phi_{2}, \Psi}\right)^{-1 / 2} h\right\|^{2}=\|f\|^{2} \geqq\left\|A^{*} f\right\|^{2}=\left\|\left(\lambda+\lambda_{1} \Delta_{\Phi_{1}, \Psi}\right)^{-1 / 2} h\right\|^{2}
$$

which proves (5.1).
Lemma 2. For $\varepsilon>0$, let

$$
\begin{equation*}
\phi_{\varepsilon}=\phi+\varepsilon \psi, \quad \psi_{\varepsilon}=\psi+\varepsilon \phi . \tag{5.3}
\end{equation*}
$$

Then

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow+0} \lim _{\eta \rightarrow+0} S\left(\phi_{\varepsilon} / \psi_{\eta}\right)=S(\phi / \psi) . \tag{5.4}
\end{equation*}
$$

Proof. First we prove

$$
\begin{equation*}
\lim _{\eta \rightarrow+0} S\left(\phi_{\varepsilon} / \psi_{\eta}\right)=S\left(\phi_{\varepsilon} / \psi\right) \tag{5.5}
\end{equation*}
$$

For this, we use the formula

$$
\begin{equation*}
J \Delta_{\Psi}^{-1}{ }_{\phi} J=\Delta_{\Phi, \Psi} . \tag{5.6}
\end{equation*}
$$

Since

$$
\begin{equation*}
\psi_{\eta} \leqq \varepsilon^{-1} \phi_{\varepsilon} \tag{5.7}
\end{equation*}
$$

for $\varepsilon \eta<1$, there exists $A_{\eta} \in \mathfrak{M}$ satisfying $\left\|A_{\eta}\right\| \leqq \varepsilon^{-1 / 2}$ and

$$
\begin{equation*}
\Psi_{\eta}=A_{\eta} \Phi_{\varepsilon} \in V . \tag{5.8}
\end{equation*}
$$

(Theorem 12(1) in [3].) Since $\lim \Psi_{\eta}=\Psi$, we have $\lim A_{\eta}=A_{0}$ where $A_{0} \Phi_{\varepsilon}=\Psi,\left\|A_{0}\right\| \leqq \varepsilon^{-1 / 2}$. By (5.6), we see that Ψ_{η} is in the domain of $\Delta_{\Phi_{c}, \Psi_{\eta}}^{-1 / 2}$ and

$$
\begin{equation*}
\Delta_{\Phi_{\varepsilon}, \Psi_{n}}^{1 / 2} \Psi_{\eta}=J \Delta_{\Psi_{n}, \Phi_{\varepsilon}}^{1 / 2} A_{\eta} \Phi_{\varepsilon}=A_{\eta}^{*} \Psi_{\eta} . \tag{5.9}
\end{equation*}
$$

In exactly same way as the proof of the lower semicontinuity (see (2.9), (2.10), (2.11) and (2.12)), we have
(5.10) $\lim _{\eta \rightarrow+0}\left(\Psi_{\eta}, f_{N}\left(\log \Delta_{\Phi_{k}, \Psi_{\eta}}\right) \Psi_{\eta}\right)=\left(\Psi, f_{N}\left(\log \Delta_{\Phi_{c}, \Psi}\right) \Psi\right)$,
(5.11) $\left|\left(\Psi_{\eta},\left(\mathbb{1}-E_{1}^{\varepsilon}, \eta\right)\left\{\log \Delta_{\Phi_{\varepsilon}, \Psi_{\eta}}-f_{N}\left(\log \Delta_{\Phi_{\varepsilon}, \Psi_{\eta}}\right)\right\} \Psi_{\eta}\right)\right| \leqq \phi_{\varepsilon}(\mathbb{1})(e N)^{-1}$
where $\eta \geqq 0$ and $\Psi_{0}=\Psi$. On the other hand, (5.9) implies
(5.12) $\quad\left|\left(\Psi_{\eta}, E_{1}^{\varepsilon}, \eta\left\{\log \Delta_{\Phi_{\varepsilon}, \Psi_{\eta}}-f_{N}\left(\log \Delta_{\Phi_{\varepsilon}, \Psi_{\eta}}\right)\right\} \Psi_{\eta}\right)\right| \leqq\left\|A_{\eta}^{*} \Psi_{\eta}\right\|^{2}(N e)^{-1}$
due to the same estimate as in (2.12). Since $\left\|A_{\eta}\right\| \leqq \varepsilon^{-1 / 2}$ independent of η, we see that

$$
\begin{align*}
& \varlimsup_{\eta \rightarrow+0}\left|\left(\Psi_{\eta}, \log \Delta_{\Phi_{c}, \Psi_{\eta}} \Psi_{\eta}\right)-\left(\Psi, \log \Delta_{\Phi_{c}, \Psi} \Psi\right)\right| \tag{5.13}\\
& \quad \leqq 2\left\{\phi_{\varepsilon}(\mathbb{1})+\varepsilon^{-1 / 2} \psi(\mathbb{1})\right\}(e N)^{-1}
\end{align*}
$$

Since $N>1$ is arbitrary, we have (5.5).
Now we prove

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow+0} S\left(\phi_{\varepsilon} / \psi\right)=S(\phi / \psi) \tag{5.14}
\end{equation*}
$$

By lower semicontinuity,

$$
\begin{equation*}
\underline{\lim } S\left(\phi_{\varepsilon} / \psi\right) \geqq S(\phi / \psi) . \tag{5.15}
\end{equation*}
$$

(If $S(\phi / \psi)=\infty$, then (5.14) follows from (5.15).)
From the formula

$$
\begin{equation*}
\int_{1}^{N}\left(\frac{1}{t+\lambda}-\frac{1}{t}\right) \mathrm{d} t=\log (1+(\lambda / N))-\log (1+\lambda) \tag{5.16}
\end{equation*}
$$

we obtain

$$
\begin{gather*}
F_{\Phi}(N) \equiv\left(\Psi, \log \left\{\mathbb{1}+\left(\Delta_{\Phi, \Psi}-\mathbb{1}\right) / N\right\} \Psi\right)-\left(\Psi, \log \Delta_{\Phi, \Psi} \Psi\right) \tag{5.17}\\
=\int_{0}^{N-1}\left(\Psi,\left(t+\Delta_{\Phi, \Psi}\right)^{-1} \Psi\right) \mathrm{d} t-(\log N)\|\Psi\|^{2}
\end{gather*}
$$

(The interchange of $\mathrm{d} t$ integration and $\mathrm{d}\left(\Psi, E_{\lambda} \Psi\right)$ integration is allowed for positive integrant $(t+\lambda)^{-1}$.) Since $\phi_{\varepsilon} \geqq \phi$, Lemma 1 implies

$$
\begin{equation*}
F_{\Phi_{\varepsilon}}(N) \leqq F_{\Phi}(N) . \tag{5.18}
\end{equation*}
$$

Since $\left\|\Delta_{\Phi_{c}, \Psi}^{1 / 2} \Psi\right\|=\left\|\Phi_{\varepsilon}\right\|$ and $\left\|\Delta_{\Phi}^{1 / 2}, \Psi \Psi\right\|=\|\Phi\|$ are finite, we have

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} F_{\Phi_{\varepsilon}}(N)=-\left(\Psi, \log \Delta_{\Phi_{\varepsilon}, \Psi} \Psi\right) \\
& \lim _{N \rightarrow \infty} F_{\Phi}(N)=-\left(\Psi, \log \Delta_{\Phi, \Psi} \Psi\right)
\end{aligned}
$$

Hence

$$
\begin{equation*}
S\left(\phi_{\varepsilon} / \psi\right) \leqq S(\phi / \psi) \tag{5.19}
\end{equation*}
$$

The inequalities (5.15) and (5.19) imply (5.14).
Remark. The above proof shows that if $\phi_{1} \leqq \phi_{2}$, then $S\left(\phi_{1} / \psi\right)$ $\geqq S\left(\phi_{2} / \psi\right)$. The same conclusion follows also from $\Phi_{2}-\Phi_{1} \in V$.

Lemma 3. Let \mathfrak{M}_{α} be an increasing net of von Neumann subalgebras of \mathfrak{M} such that $\cup_{\alpha} \mathfrak{M}_{\alpha}$ generates \mathfrak{M}. Let ϕ and ψ be normal faithful positive linear functionals of \mathfrak{M}. Let ϕ_{α} and ψ_{α} be restrictions of ϕ and ψ to \mathfrak{M}_{α}. Assume that

$$
\begin{equation*}
\psi \leqq k \phi \tag{5.20}
\end{equation*}
$$

for some $0<k$. Then

$$
\begin{equation*}
\lim _{\alpha} S\left(\phi_{\alpha} / \psi_{\alpha}\right)=S(\phi / \psi) \tag{5.21}
\end{equation*}
$$

Proof. Let $\hat{\Phi}=\Phi \otimes e_{11}+\Psi \otimes e_{22}$ and $\hat{\phi}$ be as in (4.10) and (4.12). Let $\hat{\mathfrak{M}}=\mathfrak{M}_{\otimes} \otimes \mathfrak{M}_{2}, \hat{\mathfrak{M}}_{\alpha}=\mathfrak{M}_{\alpha} \otimes \mathfrak{M}_{2}, e_{\alpha}$ be the projection on the closure of $\hat{\mathfrak{M}}_{\alpha} \hat{\Phi}, \hat{\Delta}$ be the modular operator for $\hat{\Phi}$ and $\hat{\Delta}_{\alpha}$ be the direct sum of the identity operator on $\left(\mathbb{1}-e_{\alpha}\right)(\mathfrak{H} \otimes \mathfrak{K})$ and the modular operator of $\hat{\Phi}$ for $\hat{\mathfrak{M}}_{\alpha}$ on $e_{\alpha}(\mathfrak{G} \otimes \mathfrak{R})$. By Theorem 2 of [2],

$$
\begin{equation*}
\lim _{\alpha}\left(\mathbb{1}+\hat{\Delta}_{\alpha}\right)^{-1}=(\mathbb{1}+\hat{\Delta})^{-1} \tag{5.22}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\lim \left(u_{12} \hat{\Phi}, f_{N}\left(\log \hat{\Delta}_{\alpha}\right) u_{12} \hat{\Phi}\right)=\left(u_{12} \hat{\Phi}, f_{N}(\log \hat{\Delta}) u_{12} \hat{\Phi}\right) \tag{5.23}
\end{equation*}
$$

where f_{N} is given by (2.11).
From

$$
\begin{align*}
\left\|\hat{\Delta}_{\alpha}^{1 / 2} u_{12} \hat{\Phi}\right\|^{2} & =\left\|\hat{U}^{1 / 2} u_{12} \hat{\Phi}\right\|^{2}=\left\|u_{12}^{*} \hat{\Phi}\right\|^{2} \tag{5.24}\\
& =\phi(\mathbb{1}),
\end{align*}
$$

we obtain as in (2.12)

$$
\begin{align*}
0 & \leqq \int_{N}^{\infty}(\log \lambda-\log N) \mathrm{d}\left(u_{12} \hat{\Phi}, E_{\lambda}^{\alpha} u_{12} \hat{\Phi}\right) \tag{5.25}\\
& \leqq \phi(\mathbb{1})(e N)^{-1}, \\
0 & \leqq \int_{N}^{\infty}(\log \lambda-\log N) \mathrm{d}\left(u_{12} \hat{\Phi}, E_{\lambda} u_{12} \hat{\Phi}\right) \tag{5.26}\\
& \leqq \phi(\mathbb{1})(e N)^{-1}
\end{align*}
$$

for spectral projections E_{λ}^{α} and E_{λ} of $\hat{\Delta}_{\alpha}$ and $\hat{\Delta}$.
From $k \phi \geqq \psi$ and (4.23), we have

$$
\begin{align*}
\left\|\hat{\Delta}_{\alpha}^{-1 / 2} u_{12} \hat{\Phi}\right\|^{2} & =\psi\left(A_{\alpha} A_{\alpha}^{*}\right) \tag{5.27}\\
& \leqq k \psi(\mathbb{1}), \\
\left\|\hat{\Delta}^{-1 / 2} u_{12} \hat{\Phi}\right\|^{2} & =\psi\left(A A^{*}\right) \leqq k \psi(\mathbb{1}) \tag{5.28}
\end{align*}
$$

for some A_{α} and $A \in \mathfrak{M}$. Hence

$$
\begin{align*}
0 & \geqq \int_{0}^{1 / N}(\log \lambda+\log N) \mathrm{d}\left(u_{12} \hat{\Phi}, E_{\lambda}^{\alpha} u_{12} \hat{\Phi}\right) \tag{5.29}\\
& \geqq k \psi(\mathbb{1}) \inf _{\lambda \in[0,1 / N]} \lambda \log (N \lambda) \\
& \geqq-k \psi(\mathbb{1})(e N)^{-1},
\end{align*}
$$

$$
\begin{equation*}
0 \geqq \int_{0}^{1 / N}(\log \lambda+\log N) \mathrm{d}\left(u_{12} \hat{\Phi}, E_{\lambda} u_{12} \hat{\Phi}\right) \geqq-k \psi(\mathbb{1}) /(N e) . \tag{5.30}
\end{equation*}
$$

Collecting together (5.23), (5.25), (5.26), (5.29) and (5.30), we have

$$
\begin{equation*}
\lim \left(u_{12} \hat{\Phi},\left(\log \widehat{\Delta}_{\alpha}\right) u_{12} \hat{\Phi}\right)=\left(u_{12} \hat{\Phi},(\log \hat{\Delta}) u_{12} \hat{\Phi}\right) . \tag{5.31}
\end{equation*}
$$

Hence (5.21) holds due to

$$
u_{12} \hat{\Phi}=\Psi \otimes e_{12}, \hat{\Delta}_{\alpha}\left(f \otimes e_{12}\right)=\left(\Delta_{\Phi, \Psi} f\right) \otimes e_{12}
$$

and independence of (1.1) on the choice of vector representatives.
Remark 1. Without the condition (5.20), we can obtain (5.23), (5.25) and (5.26). This implies

$$
\begin{equation*}
\varliminf_{\alpha} S\left(\phi_{\alpha} / \psi_{\alpha}\right) \geqq S(\phi / \psi) . \tag{5.32}
\end{equation*}
$$

If we have monotonicity, then (5.32) implies (5.21).

Remark 2. In the proof of Lemma 2 in [2], it is stated that

$$
\begin{equation*}
\Delta_{\alpha} h_{\alpha} \Psi=2 h^{\prime} \Psi-h_{\alpha} \Psi . \tag{5.33}
\end{equation*}
$$

This is incorrect and should be corrected as follows:
The commutant of \mathfrak{M}_{α} on $\overline{\mathfrak{M}_{\alpha} \Psi}$ is $E_{\alpha} \mathfrak{M}_{\alpha}^{\prime} E_{\alpha}$ where E_{α} is the projection on $\overline{\mathfrak{M}_{\alpha} \Psi}$ and belongs to $\mathfrak{M}_{\alpha}^{\prime}$. Since $\phi \leqq \psi$ and ψ is faithful, there exists a unique $h_{\alpha}^{\prime} \in E_{\alpha} M_{\alpha}^{\prime} E_{\alpha}$ satisfying

$$
\begin{equation*}
\phi(Q)=\left(h_{\alpha}^{\prime} \Psi, Q \Psi\right), \quad Q \in \mathfrak{M}_{\alpha} . \tag{5.34}
\end{equation*}
$$

For this h_{α}^{\prime} Lemma 1 of [2] is applicable and

$$
\begin{equation*}
\Delta_{\alpha} h_{\alpha} \Psi=2 h_{\alpha}^{\prime} \Psi-h_{\alpha} \Psi . \tag{5.35}
\end{equation*}
$$

Since $E_{\alpha} Q \Psi=Q \Psi$ for $Q \in \mathfrak{M}_{\alpha}$ and $E_{\alpha} \Psi=\Psi$, (2.4) of [2] implies

$$
\begin{equation*}
h_{\alpha}^{\prime}=E_{\alpha} h^{\prime} E_{\alpha} \tag{5.36}
\end{equation*}
$$

satisfies (5.34). Hence

$$
\begin{equation*}
\Delta_{\alpha} h_{\alpha} \Psi=2 E_{\alpha} h^{\prime} \Psi-h_{\alpha} \Psi \tag{5.37}
\end{equation*}
$$

Since $E_{\alpha} \rightarrow \mathbb{1}$, we still have the conclusion of Lemma 2 in [2].

§6. Monotonicity for Case a

We start with lemmas which are needed in the proof.

Lemma 4. Let \mathfrak{A} be a von Neumann subalgebra of \mathfrak{M} contained simultaneously in the centralizer of ϕ_{1} and ϕ_{2}. Then

$$
\begin{equation*}
S\left(\phi_{1} / \phi_{2}\right)=S\left(E_{\Re} \phi_{1} / E_{\Re} \phi_{2}\right) \tag{6.1}
\end{equation*}
$$

for $\mathfrak{M}=\mathfrak{H}^{\prime} \cap \mathfrak{M}$.
Proof. Let $\hat{\Phi}$ and $\hat{\phi}$ be constructed as in (4.10) and (4.12). Let $\hat{\mathfrak{A}}=\mathfrak{A} \otimes 1$. Then $\hat{\mathfrak{Q}}^{\prime} \cap \hat{\mathfrak{M}}=\mathfrak{N} \otimes \mathfrak{M}_{2}$, by the commutant theorem. Since
\mathfrak{H} is in the centralizer of ϕ_{1} and ϕ_{2}, we have

$$
\begin{equation*}
\hat{\phi}((x \otimes \mathbb{1}) y)=\phi_{1}\left(x y_{11}\right)+\phi_{2}\left(x y_{22}\right)=\phi_{1}\left(y_{11} x\right)+\phi_{2}\left(y_{22} x\right)=\hat{\phi}(y(x \otimes \mathbb{1})) \tag{6.2}
\end{equation*}
$$

for $x \in \mathfrak{A}$. Hence $\hat{\mathfrak{A}}$ is elementwise $\sigma_{\boldsymbol{t}}^{\boldsymbol{\phi}}$ invariant. Hence $\hat{\mathfrak{N}} \equiv \mathfrak{N} \otimes \mathfrak{M}_{2}$ is σ_{t}^{ϕ} invariant as a set. The state $\hat{\phi}$ restricted to $\hat{\mathfrak{M}}$ obviously satisfies the KMS condition relative to σ_{t}^{ϕ} and hence σ_{t}^{ϕ} coincides with the modular automorphisms of $\mathfrak{N} \otimes \mathfrak{M}_{2}$ for the state $\hat{\phi}$ restricted to $\hat{\mathfrak{N}}$. This also implies that $\overline{\mathfrak{M S} \otimes \Omega}$ is $\Delta_{\tilde{\Phi}}^{i t}$ invariant and the restriction of $\Delta_{\hat{\Phi}}$ to this
 have

$$
\begin{align*}
S\left(E_{\Re 2} \phi_{1} / E_{\Re} \phi_{2}\right) & =-\left(\left(\mathbb{1} \otimes u_{12}\right) \hat{\Phi},\left(\log \Delta_{\hat{\Phi}, \hat{N}}\right)\left(\mathbb{1} \otimes u_{12}\right) \hat{\Phi}\right) \tag{6.3}\\
& =-\left(\left(\mathbb{1} \otimes u_{12}\right) \hat{\Phi},\left(\log \Delta_{\hat{\Phi}}\right)\left(\mathbb{1} \otimes u_{12}\right) \hat{\Phi}\right) \\
& =S\left(\phi_{1} / \phi_{2}\right) .
\end{align*}
$$

Lemma 5. Let α_{i} be automorphisms of \mathfrak{M}. Let $\lambda_{i} \geqq 0, \Sigma \lambda_{i}=1$, and

$$
\begin{equation*}
\phi^{\prime}=\Sigma \lambda_{i} \phi \circ \alpha_{i}, \quad \psi^{\prime}=\Sigma \lambda_{i} \psi \circ \alpha_{i} . \tag{6.4}
\end{equation*}
$$

Then

$$
\begin{equation*}
S\left(\phi^{\prime} / \psi^{\prime}\right) \leqq S(\phi / \psi) . \tag{6.5}
\end{equation*}
$$

Proof. The desired inequality (6.5) follows from the convexity of relative entropy if we prove

$$
\begin{equation*}
S(\phi \circ \alpha / \psi \circ \alpha)=S(\phi / \psi) \tag{6.6}
\end{equation*}
$$

for any automorphism α of \mathfrak{M}.
For any automorphism α of \mathfrak{M}, there exists by Theorem 11 of [3] a unitary U_{α} such that

$$
\begin{equation*}
U_{\alpha} x U_{\alpha}^{*}=\alpha(x), \tag{6.7}
\end{equation*}
$$

$$
\begin{align*}
& U_{\alpha}^{*} \xi(\chi)=\xi(\chi \circ \alpha), \tag{6.8}\\
& {\left[U_{\alpha}, J\right]=\mathbf{0},} \tag{6.9}
\end{align*}
$$

where $\xi(\chi)$ is the unique vector representative of a normal positive linear functional χ on the fixed natural positive cone V.

From the definition

$$
\begin{equation*}
J \Delta{ }_{\xi}^{1}\left(\chi_{1}\right), \xi\left(\chi_{2}\right) x \xi\left(\chi_{2}\right)=x^{*} \xi\left(\chi_{1}\right), \tag{6.10}
\end{equation*}
$$

and the properties (6.7), (6.8), and (6.9), it follows that

$$
\begin{equation*}
U_{\alpha}^{*} \Delta_{\xi\left(\chi_{1}\right), \xi\left(\chi_{2}\right)}^{1 / 2} U_{\alpha}=\Delta \Delta_{\xi\left(\chi_{1}{ }^{\circ} \alpha\right), \xi\left(\chi_{\left.2^{\circ} \alpha\right)}\right.}^{1 / 2} . \tag{6.11}
\end{equation*}
$$

From (6.8) and (6.11), we obtain (6.6).
Q.E.D.

We now prove the case α. Let $E_{1} \ldots E_{n}$ be minimal projections of \mathfrak{A} such that $\Sigma E_{j}=\mathbb{1}$. Let

$$
\begin{equation*}
\alpha_{j}(x)=\left(2 E_{j}-\mathbb{1}\right) x\left(2 E_{j}-\mathbb{1}\right), \quad x \in \mathfrak{M}, \tag{6.12}
\end{equation*}
$$

which defines mutually commuting inner automorphisms α_{j} of \mathfrak{M}. Let

$$
\begin{align*}
& \phi^{\prime}=2^{-n} \Sigma \phi \circ \alpha_{1}^{\sigma_{1} \ldots \cdots \circ \alpha_{n}^{\sigma_{n}},} \tag{6.13}\\
& \psi^{\prime}=2^{-n} \Sigma \psi \circ \alpha_{1}^{\sigma_{1} \rho \cdots \circ \alpha_{n}^{\sigma_{n}},} \tag{6.14}
\end{align*}
$$

where the sum is over all possibilities for $\sigma_{j}=0$ or 1 and α_{j}^{0} is an identity automorphism while $\alpha_{j}^{1}=\alpha_{j}$. The functionals ϕ^{\prime} and ψ^{\prime} are invariant under α_{j} for all j. Hence E_{j} are all in the centralizers of ϕ^{\prime} and ψ^{\prime}. By Lemmas 4 and 5, we have

$$
\begin{gathered}
S\left(E_{\Re} \phi / E_{\Re} \psi\right)=S\left(E_{\Re} \phi^{\prime} \mid E_{\Re} \psi^{\prime}\right) \\
=S\left(\phi^{\prime} \mid \psi^{\prime}\right) \leqq S(\phi / \psi) .
\end{gathered}
$$

This proves the monotonicity for the case $\mathfrak{N}=\mathfrak{Q}^{\prime} \cap \mathfrak{M}$ with a finite dimensional commutative subalgebra \mathfrak{A}.

§7. Monotonicity for Case β

We start from a special case and gradually go to a general case.
(1) Commutative finite dimensional $\mathfrak{\Re}_{1}$: Let $E_{1} \ldots E_{n}$ be the minimal projections of \mathfrak{R}_{1} such that $\Sigma E_{i}=\mathbb{1}$. Since \mathfrak{R}_{1} is in the center of \mathfrak{M}, E_{j} are invariant under any modular automorphisms. Consequently, we
have

$$
\begin{align*}
& \mathfrak{S}=\Sigma^{\oplus} E_{j} \mathfrak{H}, \tag{7.1}\\
& \Phi_{k}=\Sigma^{\oplus} E_{j} \Phi_{k}, \quad(k=1,2), \tag{7.2}\\
& \Delta_{\Phi_{1}, \Phi_{2}}=\Sigma^{\oplus} \Delta_{E_{j} \Phi_{1}, E_{j} \Phi_{2}} . \tag{7.3}
\end{align*}
$$

Let

$$
\begin{equation*}
\phi_{k j}(x)=\phi_{k}\left(E_{j} x\right), \quad x \in \mathfrak{N} . \tag{7.4}
\end{equation*}
$$

From (7.2) and (7.3), we have

$$
\begin{equation*}
S\left(\phi_{1} / \phi_{2}\right)=\Sigma S\left(\phi_{1 j} / \phi_{2 j}\right) \tag{7.5}
\end{equation*}
$$

We also have

$$
\begin{equation*}
E_{\Re} \phi_{k}=\Sigma \phi_{k j}=\Sigma n^{-1}\left(n \phi_{k j}\right) . \tag{7.6}
\end{equation*}
$$

By convexity we have

$$
\begin{align*}
S\left(E_{\Re} \phi_{1} / E_{\Re} \phi_{2}\right) & \leqq \Sigma n^{-1} S\left(n \phi_{1 j} / n \phi_{2 j}\right) \tag{7.7}\\
& =\Sigma S\left(\phi_{1 j} / \phi_{2 j}\right) \\
& =S\left(\phi_{1} / \phi_{2}\right),
\end{align*}
$$

where we have used the homogeneity

$$
\begin{equation*}
S(\lambda \phi / \lambda \psi)=\lambda S(\phi / \psi) \tag{7.8}
\end{equation*}
$$

(2) Commutative \mathfrak{N}_{1} : Let \mathfrak{Y}_{α} be the increasing net of all finite dimensional subalgebra of \mathfrak{n}_{1}. By Lemma 3, we have

$$
\begin{align*}
\lim _{\alpha} & S\left(E_{\Re \otimes \varkappa_{\alpha}}\left(\phi_{1}+\varepsilon \phi_{2}\right) / E_{\Re \otimes \mathfrak{r}_{\alpha}}\left(\phi_{2}\right)\right) \tag{7.9}\\
& =S\left(\phi_{1}+\varepsilon \phi_{2} / \phi_{2}\right) .
\end{align*}
$$

By the previous case, we have

$$
\begin{align*}
& S\left(E_{\Re}\left(\phi_{1}+\varepsilon \phi_{2}\right) / E_{\Re}\left(\phi_{2}\right)\right) \tag{7.10}\\
& \quad \leqq S\left(E_{\Re \otimes \varkappa_{\alpha}}\left(\phi_{1}+\varepsilon \phi_{2}\right) / E_{\Re \otimes \mathfrak{q}_{\alpha}}\left(\phi_{2}\right)\right)
\end{align*}
$$

for all α and hence

$$
\begin{align*}
& S\left(E_{\Re} \phi_{1}+\varepsilon E_{\Re} \phi_{2} / E_{\Re} \phi_{2}\right) \tag{7.11}\\
& \leqq S\left(\phi_{1}+\varepsilon \phi_{2} / \phi_{2}\right) .
\end{align*}
$$

By taking the limit $\varepsilon \rightarrow+0$, we obtain the monotonicity by Lemma 2.
(3) Finite \mathfrak{N}_{1} : Let

$$
\begin{equation*}
(p \psi)(y)=\psi\left(y^{4}\right), \quad y \in \mathfrak{N}_{1} \tag{7.12}
\end{equation*}
$$

where ψ is a σ-weakly continuous linear functional on \mathfrak{N}_{1} and x^{\natural} denotes the unique conditional expectation from N_{1} to its center $\mathcal{Z} \equiv \mathfrak{N}_{1}$ $\cap \mathfrak{N}_{1}^{\prime}$ satisfying $\left(y_{1} y_{2}\right)^{\natural}=\left(y_{2} y_{1}\right)^{4}$. It is known ([9], Chapter 3, §5, Lemma 4 along with Radon Nikodym Theorem) that for any $\varepsilon>0$ and finite number of ψ_{k}, there exist inner automorphisms α_{j} of \Re_{1} and $\lambda_{j} \geqq 0$ with $\Sigma \lambda_{j}=1$ satisfying $\left\|p \psi_{k}-\Sigma \lambda_{j} \psi_{k} \circ \alpha_{j}\right\| \leqq \varepsilon$ for all k.

The 4 -mapping extends to a normal expectation from $\mathfrak{N} \otimes \mathfrak{R}_{1}$ to $\mathfrak{N} \otimes 3$ satisfying $(x \otimes y)^{\natural}=x \otimes y^{\natural}$. Correspondingly p is defined for functionals on $\mathfrak{N} \otimes \mathfrak{N}_{1}$. Since products of normal linear functionals are total in norm topology, we also can approximate $p \phi_{k}$ by $\Sigma \lambda_{j} \phi_{k} \circ \alpha_{j}$ simultaneously for $k=1$, 2 , where α_{j} is an inner automorphism by elements in \mathfrak{N}_{1}. By lower semi-continuity, convexity, and Lemma 5,

$$
\begin{align*}
S\left(p \phi_{1} / p \phi_{2}\right) & \leqq \varliminf \underline{\lim } S\left(\Sigma \lambda_{j} \phi_{1} \circ \alpha_{j} / \Sigma \lambda_{j} \phi_{2} \circ \alpha_{j}\right) \tag{7.13}\\
& \leqq \underline{\lim } \Sigma \lambda_{j} S\left(\phi_{1} \circ \alpha_{j} / \phi_{2} \circ \alpha_{j}\right) \\
& =S\left(\phi_{1} / \phi_{2}\right) .
\end{align*}
$$

By $\left(y_{1} y_{2}\right)^{\natural}=\left(y_{2} y_{1}\right)^{\natural}, \mathfrak{M}_{1}$ is in the centralizer of $p \phi_{1}$ and $p \phi_{2}$. Since $\mathfrak{N}_{1}^{\prime} \cap \mathfrak{M}=\mathfrak{N} \otimes 3$, Lemma 4 implies

$$
\begin{align*}
S\left(p \phi_{1} / p \phi_{2}\right) & =S\left(E_{\Re \otimes 3}\left(p \phi_{1}\right) / E_{\Re \otimes 3}\left(p \phi_{2}\right)\right) \tag{7.14}\\
& =S\left(E_{\Re \otimes_{3}} \phi_{1} / E_{\Re \otimes_{3}} \phi_{2}\right),
\end{align*}
$$

where $\mathfrak{N \otimes} \otimes 3$ is elementwise invariant under 4 -mapping and hence $E_{\Re \otimes 3}(p \phi)$ $=E_{\Re \otimes \Omega} \phi$. By combining (7.13), (7.14) and the previous case (2), we obtain the monotonicity for the present case.
(4) General \mathfrak{N}_{1} : Let ψ be a normal faithful positive linear functional on \mathfrak{N}_{1} (for example restriction of ϕ_{k} to \mathfrak{N}_{1}). We first consider \mathfrak{N}_{1} alone in a space \mathfrak{H}_{1} with a cyclic and separating vector Ψ such that $(\Psi, y \Psi)=\psi(y), y \in \mathfrak{M}_{1}$. Let E_{0} be the projection onto the subspace of all Δ_{Ψ} invariant vectors.

$$
\begin{equation*}
\lim _{T \rightarrow \infty}(2 T)^{-1} \int_{-T}^{T} \Delta_{\Psi}^{i t} \mathrm{~d} t=E_{0} \tag{7.15}
\end{equation*}
$$

strongly. Hence

$$
\begin{equation*}
p_{\psi}(y) \equiv \lim _{T \rightarrow \infty}(2 T)^{-1} \int_{-T}^{T} \sigma_{t}^{\psi}(y) \mathrm{d} t \in \mathfrak{M} \tag{7.16}
\end{equation*}
$$

is strongly convergent on Ψ and hence on $\mathfrak{M}^{\prime} \Psi$ and hence on \mathfrak{S}_{1} by the uniform boundedness. The mapping p_{ψ} is the conditional expectation from \mathfrak{N}_{1} to the centralizer $\mathfrak{N}_{2}=\mathfrak{N}_{1}^{\psi}$ relative to ψ.

If $\phi \leqq \lambda \psi$ for some $\lambda>0$, then there exists $y^{\prime} \in \mathfrak{N}_{1}^{\prime}$ such that

$$
\phi(y)=\left(\Psi, y y^{\prime} \Psi\right) .
$$

Then

$$
\begin{equation*}
\frac{1}{2 T} \int_{-T}^{T}\left(\phi \circ \sigma_{t}^{\psi}\right)(y) \mathrm{d} t=\left(\Psi, y(2 T)^{-1} \int_{-T}^{T} \Delta_{\Psi}^{i t} y^{\prime} \Psi\right) \tag{7.17}
\end{equation*}
$$

converges in norm of linear functionals simultaneously for a finite number of such ϕ^{\prime} s. Since ϕ satisfying $\phi \leqq \lambda \psi$ for some λ is norm dense, it is possible to approximate $\phi_{k} \circ p_{\psi}$ simultaneously for a finite number of ϕ_{k} by $\Sigma \lambda_{i} \phi_{k} \circ \sigma_{t_{i}}^{\psi}$ where $\lambda_{i} \geqq 0, \Sigma \lambda_{i}=1$. Hence the same holds for functionals ϕ_{k} on $\mathfrak{N} \otimes \mathfrak{N}_{1}$ where we approximate $\phi_{k} \circ\left(\iota \otimes p_{\psi}\right)$ by $\Sigma \lambda_{i} \phi_{k} \circ\left(\iota \otimes \sigma_{t_{i}}^{\psi}\right)$ with ι denoting the identity automorphism. Hence

$$
\begin{align*}
& S\left(\phi_{1} \circ\left(\iota \otimes p_{\psi}\right) / \phi_{2} \circ\left(\iota \otimes p_{\psi}\right)\right) \tag{7.18}\\
& \quad \leqq S\left(\phi_{1} / \phi_{2}\right) .
\end{align*}
$$

On the other hand, $\mathfrak{R}_{2}=\mathfrak{N}_{1}^{\psi}$ is a finite algebra with ψ as a trace. By the previous case (3), we have

$$
\begin{equation*}
S\left(E_{\Re} \phi_{1} / E_{\Re} \phi_{2}\right) \leqq S\left(E_{\Re \otimes \Re_{2}}\left\{\phi_{1} \circ\left(\iota \otimes p_{\psi}\right)\right\} / E_{\Re \otimes \Re_{2}}\left\{\phi_{2^{\circ}}\left(\iota \otimes p_{\psi}\right)\right\}\right) \tag{7.19}
\end{equation*}
$$

where we have used $E_{\Re} \phi_{k}=E_{\Re}\left\{\phi_{k} \circ\left(\iota \otimes p_{\psi}\right)\right\}$.
We can complete our proof if we show

$$
\begin{align*}
& S\left(E_{\Re \otimes \mathfrak{R}_{2}}\left\{\phi_{1} \circ\left(\iota \otimes p_{\psi}\right)\right\} / E_{\Re \otimes \mathfrak{n}_{2}}\left\{\phi_{2} \circ\left(\iota \otimes p_{\psi}\right)\right\}\right) \tag{7.20}\\
& \quad=S\left(\phi_{1} \circ\left(\iota \otimes p_{\psi}\right) / \phi_{2} \circ \iota \otimes p_{\psi}\right) .
\end{align*}
$$

Noting that $\mathfrak{N} \otimes \mathfrak{R}_{2}$ is the set of σ_{t}^{ψ}-invariant elements in $\mathfrak{N} \otimes \mathfrak{R}_{1}$ and that both $\phi_{k} \circ\left(\iota \otimes p_{\psi}\right)$ are invariant under $\iota \otimes \sigma_{t}^{\psi}, t \in \mathbb{R}$, (7.20) follows from the following:

Lemma 6. Let \mathscr{G} be a set of automorphisms of \mathfrak{M} such that ϕ_{1} and ϕ_{2} are both \mathscr{G}-invariant, i.e. $\phi_{k} \circ g=\varphi_{k}$ for all $g \in \mathscr{G}$. Let $\mathfrak{M}=\mathfrak{M}^{G}$ be the set of \mathscr{G}-invariant elements of \mathfrak{M}. Then

$$
\begin{equation*}
S\left(E_{\Re} \phi_{1} / E_{\Re} \phi_{2}\right)=S\left(\phi_{1} / \phi_{2}\right) . \tag{7.21}
\end{equation*}
$$

Proof. Let $\hat{\Phi}$ and $\hat{\phi}$ be given by (4.10) and (4.12). Then $\hat{\phi}$ is invariant under automorphisms $g \otimes \ell$ on $\mathfrak{M} \otimes \mathfrak{M}_{2}$ for all $g \in \mathscr{G}$. Hence $g \otimes \iota$ commutes with σ_{t}^{ϕ}. This implies that $\mathfrak{N} \otimes \mathfrak{M}_{2}$ which is the set of $(\mathscr{G} \otimes \iota)$-invariant elements of $\mathfrak{M} \otimes \mathfrak{M}_{2}$ is $\sigma_{t}^{\boldsymbol{\phi}}$ invariant as a set. By the same proof as Lemma 4, we obtain (7.21).

§8. Monotonicity for Case γ

First we consider finite dimensional \mathfrak{N}. Let E_{1}, \ldots, E_{n} be the minimal projections of the center of \mathfrak{N} satisfying $\Sigma E_{j}=\mathbb{1}$. Since $\mathfrak{A}=\left\{E_{1}, \ldots\right.$, $\left.E_{n}\right\}^{\prime \prime}$ is commutative, we have

$$
\begin{equation*}
S\left(E_{\mathfrak{Q}_{1}} \phi_{1} / E_{\mathfrak{Q}_{1}} \phi_{2}\right) \leqq S\left(\phi_{1} / \phi_{2}\right) \tag{8.1}
\end{equation*}
$$

for $\mathfrak{A}_{1}=\mathfrak{A}^{\prime} \cap \mathfrak{M}$.
The algebra \mathfrak{N}_{1} is a direct sum of $\mathfrak{\Re}_{1} E_{j}$ and each $\mathfrak{\Re}_{1} E_{j}$ is a tensor product $\left(\mathfrak{N} E_{j}\right) \otimes\left\{\left(\mathfrak{N}^{\prime} \cap \mathfrak{N}_{1}\right) E_{j}\right\}$. Let $\phi_{k j}$ be the restriction of ϕ_{k} to $\mathfrak{N}_{1} E_{j}$, where E_{j} is the identity. As in (7.5), we have

$$
\begin{align*}
& S\left(\phi_{1} / \phi_{2}\right)=\sum_{j} S\left(\phi_{1 j} / \phi_{2 j}\right) \tag{8.2}\\
& S\left(E_{\Re} \phi_{1} / E_{\Re} \phi_{2}\right)=\sum_{j} S\left(E_{\Re E_{j}}\left(\phi_{1 j}\right) / E_{\Re E_{j}}\left(\phi_{2 j}\right)\right) \tag{8.3}
\end{align*}
$$

By case (β), we have

$$
\begin{equation*}
S\left(\phi_{1 j} / \phi_{2 j}\right) \geqq S\left(E_{\Re E_{J}}\left(\phi_{1 j}\right) / E_{\Re E_{J}}\left(\phi_{2 j}\right)\right) . \tag{8.4}
\end{equation*}
$$

From (8.2), (8.3) and (8.4), we have monotonicity.
The case of general approximately finite algebra \mathfrak{N} can be deduced from the case of finite dimensional \mathfrak{N} by using Lemmas 2 and 3 just as in the proof of case $\beta(2)$.

References

[1] Araki, H., Publ. RIMS, Kyoto Univ. 9 (1973), 165-209.
[2] —, Commun. Math. Phys. 38 (1974), 1-10.
[3] —, Pacific J. Math. 50 (1974), 309-354.
[4] —, Commun. Math. Phys. 44 (1975), 1-7.
[5] , Recent developments in the theory of operator algebras and their significance in theoretical physics. To appear in Proceedings of convegno sulle algebre C^{*} e loro applicazioni in Fisica Teorica, Rome, 1975.
[6] -, Relative entropy and its applications. To appear in Proceedings of International colloquium on mathemarical methods of quantum field theory, 1975, Marseille.
[7] ——, Inequalities in von Neumann algebras. To appear in Proceedings of Vingtieme rencontre entre physiciens theoriciens et mathematiciens, May 1975, Strasbourg.
[8] Connes, A., Ann. Scient. École Norm. Sup. 4e série 6 (1973), 133-252.
[9] Dixmier, J., Les algèbres d'operateur dans l'espacc hilbertien. Gauthier Villars, Paris, 1969.
[10] Kaplansky, I., Pacific J. Math. 1 (1951), 227-232.
[11] Lieb, E. H., Advances in Math. 11 (1973), 267-288.
[12] Lindblad, G., Commun. Math. Phys. 39 (1974), 111-119.
[13] Takesaki, M., Tomita's theory of modular Hilbert albegras and its applications. Springer Verlag, 1970.
[14] Umegaki, H., Kōdai Math. Sem. Rep. 14 (1962), 59-85.
[15] Woronowicz, S. L., Reports on Math. Phys. 6 (1975), 487-495.

[^0]: Received September 1, 1975.

