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Relative Entropy of States of von Neumann

Algebras
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Huzihiro ARAKI

Abstract

Relative entropy of two states of a von Neumann algebra is defined
in terms of the relative modular operator. The strict positivity, lower semi-
continuity, convexity and monotonicity of relative entropy are proved. The
Wigner-Yanase-Dyson-Lieb concavity is also proved for general von Neumann
algebra.

§ 1. Introduction

A relative entropy (also called relative information, see [12], [14])

is a useful tool in the study of equilibrium states of lattice systems

([2], [4], [6]). For normal faithful positive linear functional </> and \l/

of a von Neumann algebra 9W, the relative entropy is defined by

(1-1) S(0/^)=-(y,(logJ0.y)!P)

where A^^ is the relative modular operator of cyclic and separating vec-

tor representatives $ and W of 0 and \j/, and (1.1) is independent of

the choice of vector representatives <P and W. The definition (1.1)

coincides with usual definition

(1-2) S(ptlpJ = tr fa log P+) - tr (^ log p£

when SR is finite dimensional and p^ and p# are density matrices for

<£ and \l/.

We shall prove the following properties of S((j)/\l/).

(1) Strict positivity: If <^(1) = ̂ (1), then
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(1.3)

and the equality holds if and only if c/) = i//,

(2) Lower semi-continuity: If lim ||<£n — 0|| =liin H^ — ̂ || =09

(1.4)

(3) Convexity: S^/ij/) is jointly convex in $ and i/r. Namely

(1-5)

if 1^0 and 2^=1.

(4) Monotonicity:

(1.6)

where 1%$ and JE^ denote the restrictions of $ and i// to a von Neu-

mann subalgebra 91 of 9M, and 91 is assumed to be one of the following:

(Case a) 91 = 91' n 2B for a finite dimensional abelian von Neumann

subalgebra 91 of 2R.

(Case P) 9Jl=9l®9ll8

(Case 7) 91 is approximately finite (i.e. generated by an increasing

net of finite dimensional subalgebras). This case includes any finite

dimensional 91.

In the proof of convexity, we prove that

(1.7) \\(Awyi2xV\\*

is jointly concave in 0 and i// for fixed xesM and ]?e[0, i]. (Wigner-

Yanase-Dyson-Lieb concavity.)

For connection of these general results with finite matrix inequalities,

see [7].

§20 Strict Posltivity and Lower Semi-Continuity

We shall take $ and W to be unique vector representatives of 0

and \// in a fixed natural positive cone V=V^=V0 ([3]). Then

(2.1)
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Let £A be the spectral projections of A®^. Then

(2.2)

By (2.1),

(2.3)

Hence (2.2) is definite and gives either real number or +00.

Since the numerical function log a is concave,

(2.4)

for any positive measurable function a(A) of Ae(0, oo) and any proba-

bility measure /i on (0, oo). By taking a(A) = A ! /2 and
2, the inequality (2.4) with log a(A) = (log A)/2 yields

(2.5)

By Schwartz inequality,

(2.6)

Hence the right-hand side of (2.5) is non-negative when 0(1) = ̂ (1) and

the equality holds only if the equality holds in (2.6), namely only if

$ = !F. This proves the strict positivity. (An alternative proof follows

from logA^/l— 1.)

To prove lower semicontinuity, let 4>n, 0, \l/n and \l/ be normal faith-

ful positive linear functionals of 9K such that

(2.7) lim ||0B-0|| =0, lim ||^B-^|| =0.
» R

Let ^n, ^, Wn and !F be vector representatives of </>,„ 0, ^ and if/ in F.

Then

(2.8) lim ||^-^||=0, lim||^-<F|j=0
n n

and hence
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(2.9) lim(l +Ji/f,.)-'
n

strongly. (See Theorem 4(8) in [3] and Remark 2 at the end of section

4.) Hence

(2.10) Km/Cd^yJ =/(4<pf,p)
»

for any bounded continuous function /. (See [10], Lemma 2.)

Let ./r = 3, 4,... and

(2.11) log AT if A ̂  log IV,

-logJV if A^-logJV,

I A otherwise.

Let £j be the spectral projection of A^n^n. Since

we have

Since

(2.13)

we have

(2. 14)

By using (210) with f(x) =fN(log x), we obtain from (2.14)

(2. 1 5) limS(0n/« £ - OP, Mlog J*fy)90 - 0(1) (dV)-
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Since the right-hand side of (2.15) tends to S(0/i/0 as ./F-»oo, we have

(1.4).

§3. Unitary Cocycle

We need some properties of unitary cocycle in the proof of WYDL

concavity. The unitary cocycle is defined by

(3.1) (D0:Di/0, = (^)<W<.

It is unitary elements of 931 continuously depending on real parameter t

and satisfying the following equations ([8], Lemmas 1.2.2, 1.2.3 and

Theorem 1.2.4):

(3.2)

(3.3)

(3.4) (D<£ : D^laf (x) (D0 : Dtfr)* = erf (x) ,

(3.5)

We now start deriving some equations useful in our proof of WYDL

concavity (cf. [5]).

If /l^rg^ with A>0 (and only in such a case), (D0: D\f/)t has an

analytic continuation in t to the strip O^InU^— 1/2. In other words

there exists an 931-valued function a^(z) of z in the tube region

(3.6) {z;O^Rez^l}

such that o^(z) is strongly continuous in z on (3.6), holomorphic in z

in the interior of (3.6)? bounded (by A~R e z /2) and satisfies

(3.7)

(3.8)

(3.9)

(For later typographical convenience, we scaled r by 21.)

The existence of such oc^(z) is seen as follows: First define a^
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on a dense set WF by

(3.10)

For z = 2if,

(3.11)

and hence

(3.12)

If (and only if) A20^ for A>0, there exists ,4e91 satisfying
and ^ = ̂ ^F (Theorem 12(1) of [4]). Then

Hence for z = 2it+!9

(3.13)

due to (2.1) and hence

(3.14)

Since (A0^)Z/2W is holomorphic in z for Reze(0, 1) and continuous
for Reze[0, 1] due to YeD(A&$) (see (2.1)), we have

(3.15) ll^(z)||= sup \(f9^(z)x'V)\

by three line theorem. The rest follows from the definition.
Since (A^v)

 1/2W = $eV, we have

(3.16) 0 = ^(l)W=J^(l)W=j(^(l))W,

where J is the modular conjugation operator common to vectors in V.
The analytic continuation of the cocycle equation (3.5) yields

(3.17) a,(2is)tf{a,(z)} = a,(z + 2is)
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for real s and any z in (3.6). In particular

(3.18) «,(! + /0)%(1 +/0) = <2{^(1)

The cocycle equation (3.5) can be rewritten as

(3.19)

When we apply this on W, the resulting equation has the following

analytic continuation :

(3.20) ^(z1)V=^(zl+z2)A^2^(-z2)*V9

which reduces to (3.19) (applied on *F) when z1 and z2 are pure imagi-

nary and hence holds when zl5 — z2 and zt + z2 are all in (3.6). If we

set z1 = l and z2 = z — 1 with Of^Rezrg l , we obtain

(3.21) <P =

where j(x) = JxJeW for xe9K and j(x
By the intertwining property (3.4),

(3.22) ^(z)ff*/,/2(x) = <

holds for z=2it and hence

(3.23) <^(z)j(<^(l-z)yi

where (3.21) is used. Since two extreme ends of this equation have

analytic continuations in z in (3.6), the equation holds for such z. In

particular, for Orgpgl ,

(3.24)
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If $ and x are normal faithful positive linear functional and

(3.25) tfr

with 0<;i<l, then il/^Afa ^(1-% with A>0 and 1-A>0. By (3.16),

we have

(3,26) #*) = (*, x*) = CP, x/(a^(l)

for xeSOi Similarly

Due to (3.25), we have

(x* y, J{1 - ̂ (1)%(1) - (1 - A)ax(l)*a/l)} !P) = 0,

Since JC*?F, xeSIR are dense, J2 = i and W is separating for 9[R9

(3.27) 1 = ̂ (1)%(1) + (1 -AK(l)*oe,a).

If we use (3.18), we also obtain

(3.28) Ao^(l + ifl)%(l + 10) + (1 - A)a

§4e WYDL Concavity and the Convexity of Relative Entropy

First we prove the concavity of

(4.1)

in 0 for any fixed xeW and pe[0, 1]. We use the proof technique of

Lieb ([11], Theorem 1).

Let 0, %, A and \l/ be as in the previous section. Our aim is to

prove

(4.2) A/X0, x) + (1 - A)/p(x, x) g /^, x) .

Consider

(4.3) 0(z) = A^(z) + (l~A)Tz(z),

(4.4) T,(z) = (a,©Xa,(l^
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Since g(z) is holomorphic in z on (3.6), we have

(4.5) \g(p)\ gmax {sup \g(i0)\, sup \g(\ + /0)|} .
e e

By (3.24),

(4.6) g(p) = A/X& x) + (1 -

By elementary inequalities,

(i0)| £(1/2) {||a^(- tf)7(«

By the unitarity of a/r'0) and by (3.28), we have

The other term is obtained by substitution of —9 into 0. Hence

(4.7) |ff(ifl)|^||J5/2xf||2=/^, x).

A similar calculation starting from

^

yields

(4.8)

Collecting (4.5), (4.6), (4.7) and (4.8) together, we obtain (4.2).

Next we prove the WYDL concavity. The passage from (4.1) to

(4.9) Wi, fa, x^Vwpx*^

is by the 2x2 matrix trick ([8], Lemma 1.2.2).

Let 9M2 be a 2x2 full matrix algebra with a matrix unit M^. (f = l, 2;

7 = 1,2) acting on a 4-dimensional space ft with an orthonormal basis

eu (/ = !, 2; 7 = 1, 2) satisfying u^^d^e^. We consider the von Neu-
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maun algebra 9JI®3J12 acting on §®St instead of 9R acting on §. Let

(4.10) $ = @1®e

where 0± and $2
 are cyclic and separating vectors in a natural cone in

§ corresponding to functional (t>£x) = ($i9 x®^ xeW. The vector $

is cyclic and separating and its modular operator yields the relative

modular operator through the relation

(4.11) ( x u 1 2 = 0 ^ 2 2 1 2

where xeSOt Since

(4.12)

for

(4.13)

$ is linear in (</>l9 02)« Hence the concavity of

(4.14) II

in $ implies the WYDL concavity.

Let EA be the spectral projection of A#aW. The WYDL concavity

just proved implies that

(4.15)

is concave jointly in 0 and ijs, for fixed pe[0, 1]. If we prove

(4. 16) S(MW = lim p- !

the convexity of relative entropy follows.

To prove (4.16), we note that

(4.17) lim Jp-1(l-A^)d( !F, EASO= -
jp->+0

due to (2.3) and
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for A^l and p>Q. Since 1 — lp^Q for A^l, (4.17) is a lower bound

for the inferior limit of p~l{\l/(T) — sp(0/^)} f°r e^l- Hence (4.16) holds
if S(0/i/0=oo. Since

for 0<A^1 and

^ - logAd(<F,
o

tends to 0 as e-»0 uniformly in p if S(0/^)<oo. Hence (4.17) implies

(4.16) also for this case.

Remark 1. As a special case of WYDL concavity with p=l/29 we

have a result of Woronowicz [15] that

(4.18) (#,

is concave jointly in 4> and if/. For x = l, it implies the concavity of

(^, W) in (^), ̂ f). This implies the concavity of $-» £(</>) = $ in the sense

that

(4.19)

because the set of ^(^) = !F is F and V is self dual.

Remark 2, If (2.7) and hence (2.8) hold, then

(4.20) lim||<Pn-^||=0

where $n and $ are defined by equation (4.10) where ^ is replaced by

0n or cP and $2 i§ replaced by Wn or *F. By the proof of Theorem 10

in [3],

(4.21) lim(l + Jl/2)-i=(l + Jl/2)-i.
n Vn v

The subspace §®e12 of §®5l is invariant under (l + J^2)"1 and
^/2)~l and their restrictions to this space are
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Hence (2.9) holds.

Remark 30 From the 2x2 matrix method above, we can derive

the following useful formula. Let /l^1^02 for some 1^0. In this

case there exists Aeffll such that of1 04) has an analytic continuation

for OgImfgl /2 with affc(A)^Q, \\A\\ g^1/2 and

(4.22) 02(x) = 01(^*x4)

due to Theorem 12(1) and Theorem 14(5) of [3]. (The analyticity and

positivity condition are equivalent to A0l e V.) We can then prove the

formula

(4.23) fff,2(Wl2) = ^*Kl2

as follows.

Let 4>1? $2, ^ be constructed as before. Let 3 be the modular

conjugation operator for $. Then J(f®eij) = Jf®eji (for example by

Lemma 6.1 of [1]). Since JA^J=A^, we have

(4.24)

Hence

(4.25) ^ij/52*2

and

(4.26)

This implies that 0f(w12) has an analytic continuation o"f(w12)e9W for

gl/2 satisfying
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(4.27) v!(ui2)y
f$ = yrA%ui2$, /eSW

and (4.23) by Lemma 6 of [3].

§5. Some Continuity of Relative Entropy

We need the monotonicity of (l + ̂ .p)"1 in $:

Lemma 1. // /1101^A2^2 f
or ^i>0, A2>0, then

(5.1)

Proof. For * e 9M, we have

(5.2)

where we have used

for A$iV=\tdEt. Since 9)1 IP is the core of Affiy, (5.2) implies that the

domain of (A+A^^y)1/2 is contained in that of (A+A2J,!)2>y)1'2 and

for all / in the domain of (^ + ̂ i^01}^)l/2^ For any ge$, we take /

0 ^)~ 1 / 2 ^ and we find

| ̂  I I 0 H .

Hence

satisfies ||^L||^1. For /=(A + A2^la,2^)~1/2ft with any /ie§, we have



822 HUZIHIRO ARAKI

which proves (5.1).

Lemma 2. For e>0, let

(5.3) 0£

Then

(5.4) lim lim

Proof, First we prove

(5.5) lim

For this, we use the formula

(5.6) JA^J = A0)T,

Since

(5.7) \l/n^8~l(f)E

for e f /<l , there exists Ane9)l satisfying \\An\\ ^e~1/2 and

(5 8) W =A 0 eVW'0/ x 1] **1]^ E C V °

(Theorem 12(1) in [3].) Since l im¥ n=W, we have HmAn = A0 where
A0<1>E=¥, \\AQ\\ ̂ s~i/2. By (5.6), we see that Wt1 is in the domain of

'^ie/'Fr, ailC^

In exactly same way as the proof of the lower semicontinuity (see

(2.9), (2.10), (2.11) and (2.12)), we have

(5.11) |(y,, (l-£l-'){logJ,..y,-

where ^^0 and !P0 = !P. On the other hand, (5.9) implies
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(5.12) |(^,El>Hlog^,,-M^^

due to the same estimate as in (2.12). Since \\An\\ ^e~1/2 independent

of rj, we see that

(5.13) m \(<P,,, logA9nVnVJ-(Y, log J*C(¥
-

Since N>1 is arbitrary, we have (5.5).

Now we prove

(5.14) lim
£-» +

By lower seniicontinuity,

(5.15)

(If S(0/i/0 = °o, then (5.14) follows from (5.15).)

From the formula

(5.16)

we obtain

(5.17)

= \N~\y, (t + A0iVrly)dt-(\ogN) || '/'p.
Jo

(The interchange of d^ integration and d(W9 E^W) integration is allowed

for positive integrant (r + A)"1.) Since 0E^0, Lemma 1 implies

(5J8)

Since \\A^W\\ = ||4>e|| and \\A^V\\ = \\$\\ are finite, we have

lim F0(JV)= -(y,
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Hence

(5.19) 5(0^)gS(0M).

The inequalities (5.15) and (5.19) imply (5.14).

Remark* The above proof shows that if 0i^023 then 5(0 J^r)

_5(02/i/0. The same conclusion follows also from <P2 — cf^eF.

Lemma 3. Let 9Jlx be an increasing net of von Neumann sub-

algebras of $)l such that W9Ka generates 301. Let 0 and $ be normal
a

faithful positive linear functional of 9)1. Let 0a and i^a be restrictions

of 0 and if/ to 9Ka. Assume that

(5.20) t/^/c0

for some 0</c. Then

(5.21) li

Let ^ = (P®e11 + ffr®e22
 and <? be as in (4-10) and (4.12).

Let 5K = aR®att2, $!a = 2Ra®
sJR2? ea be the projection on the closure of

93la$, A be the modular operator for $ and Ax be the direct sum of the

identity operator on (1 — ea)(§®^) and the modular operator of $ for

SRa on ea(§®R), By Theorem 2 of [2],

(5.22)

Hence

(5.23)

where /^ is given by (2.11).

From

(5.24)

=0(1),
we obtain as in (2.12)
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(5.25) 0

(5.26)

for spectral projections E\ and £A of 4* and A.

From k(j)^\l/ and (4.23), we have

(5.27) \\A-V2ui2$\\2

(5.28) ||^-1/X2^

for some Ax and ^.6SJI. Hence

(5.29) 0

inf Alog(JVA)
Ae[0,l /]V]

(5.30)
Jo

Collecting together (5.23), (5.25), (5.26), (5.29) and (5.30), we have

(5.31)

Hence (5.21) holds due to

and independence of (1.1) on the choice of vector representatives.

Remark 1. Without the condition (5.20), we can obtain (5.23),

(5.25) and (5.26). This implies
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(5.32) limSC^/^kS^M).
a

If we have monotonicity, then (5.32) implies (5.21).

Remark 2e In the proof of Lemma 2 in [2], it is stated that

(5.33) AahaW = 2h'W-hxW.

This is incorrect and should be corrected as follows:

The commutant of 9Ma on WKW is Ea$R'aEa where EK is the projec-
tion on 9Jla!F and belongs to Wa. Since $^\l/ and \j/ is faithful, there

exists a unique h'K€EKWKEa satisfying

(5.34)
For this h'x Lemma 1 of [2] is applicable and

(5.35) Axha<P = 2h'aW-hxY.

Since EXQ'P=QIF for QeWx and E^ = W, (2.4) of [2] implies

(5.36) h'x=Exh'Ea .

satisfies (5.34). Hence

(5.37) Axhx¥=2Exh'T-hxy.

Since -Ea-»l3 we still have the conclusion of Lemma 2 in [2]0

§6. "Moeotoeklty for Case a

We start with lemmas which are needed in the proof.

Lemma 4* Let 21 be a von Neumann subalgebra of W. contained

simultaneously in the centralizer of <j)l and $2- Then

(6.1) S(^1/02) = S(£R01/£R02)

for K=9rn2tt .

Proof, Let ^ and $ be constructed as in (4.10) and (4.12). Let

$ = 21®1. Then $' nSW = 9l®9M2, by the commutant theorem. Since
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91 is in the centralize! of (j>l and 02, we have

(6.2) $((x®l)>0 = 0i(*J'ii) + 02(*:y22^

J\ -. S\

for xe9I. Hence 91 is elementwise of invariant. Hence 9l = 9l®SK2

is of invariant as a set. The state $ restricted to 91 obviously satisfies

the KMS condition relative to of and hence of coincides with the modu-

lar automorphisms of 91®9M2 for the state 0 restricted to 91. This also

implies that 9t§®5\ is Al£ invariant and the restriction of A® to this
^ /\ /\

space is the modular operator A^^ of $ for 91. Since !®M12e9l, we

have

(6.3)

)$, (log 4$)

Lemma 5. Le^ af fee automorphisms of SDl. Let ^^

(6.4) c>' = ̂ 0oa/, ^' = 2:A^oa..

(6.5)

Proof. The desired inequality (6.5) follows from the convexity of

relative entropy if we prove

(6.6) S(0oa/i^oa) = S(0/^)

for any automorphism a of SOI

For any automorphism a of 9JI, there exists by Theorem 11 of [3]

a unitary C7a such that

(6.7)

(6.8)

(6.9)
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where £(/) is the unique vector representative of a normal positive linear

functional % on the fixed natural positive cone V.

From the definition

(6.10)

and the properties (6.7), (6.8), and (6.9), it follows that

(6.11) ^^j^uaa^.^^l/z2!..).^.-.)-

From (6.8) and (6.11), we obtain (6.6). Q.E.D.

We now prove the case a. Let E1...En be minimal projections of

21 such that IEj = l. Let

(6.12) a/x) = (2Ej - l)x(2E,- - 1), xe 2R,

which defines mutually commuting inner automorphisms a,- of 2W. Let

(6.13) 0' = 2-"I#oa<[io...oa;«,

(6.14) ^' = 2"B2;^oa^io...oa;»,

where the sum is over all possibilities for <r/ = 0 or 1 and o$ is an identi-

ty automorphism while ocj=ocj-. The functionals 0' and \l/r are invariant

under a,- for all j. Hence Ey are all in the centralizers of $' and if/'.

By Lemmas 4 and 5, we have

This proves the monotonicity for the case 5R = 5l' nSOl with a finite dimen-

sional commutative subalgebra 91.

§7o Monotonicity for Case j8

We start from a special case and gradually go to a general case.

(1) Commutative finite dimensional 91^: Let E^...En be the minimal

projections of 9^ such that 1*1̂  = 1. Since 9l± is in the center of 9JI,

Ej are invariant under any modular automorphisms. Consequently, we
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have

(7.1) § = !%§,

(7.2) $k = X®Ej$k9 ( fe=l ,2) ,

(7.3) A01^2 = I®AEj01}Ej02.

Let

(7.4) ^/x) = 0fc(E;x), xe 91.

From (7.2) and (7.3), we have

(7.5)

We also have

(7.6)

By convexity we have

(7.7)

where we have used the homogeneity

(7.8)

(2) Commutative 9ll: Let 9Ia be the increasing net of all finite

dimensional subalgebra of 9^. By Lemma 3, we have

(7-9)

By the previous case, we have

(7.10)
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for all a and hence

(7.11)

By taking the limit £-»+0, we obtain the monotonicity by Lemma 2,

(3) Finite 9^: Let

(7.12) W)00=^X yen,

where ^ is a a-weakly continuous linear functional on flx and x*

denotes the unique conditional expectation from N± to its center 3 — ^1

flStt'i satisfying (yly2^ = (y2yi}^ It is known ([9], Chapter 3S §5?

Lemma 4 along with Radon Nikodym Theorem) that for any e>0 and

finite number of \j/k9 there exist inner automorphisms a,- of 91 j and Aj^O

with ^- = 1 satisfying ||p^fc — ZA^oajH^e for all fe.

The 4 -mapping extends to a normal expectation from 9109^ to

5R®3 satisfying (x®y)* = x®y*. Correspondingly p is defined for func-

tionals on 9l®5Flls Since products of normal linear functional are total

in norm topology, we also can approximate pcj>k by Zhjcfrjoaij simultane-

ously for fc = l, 2, where oCj is an inner automorphism by elements in 5F110

By lower semi-continuity, convexity, and Lemma 5,

(7.13)

lim 2A,

ft3 5fti is in tne centralizer of p^ and p^2- Since

3 Lemma 4 implies

(714)

where 91® 3 is elementwise invariant under 4 -mapping and hence
=^K®80' % combining (7.13), (7.14) and the previous case (2), we
obtain the monotonicity for the present case.
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(4) General 911: Let ^ be a normal faithful positive linear func-

tional on <Sll (for example restriction of <£k to 9^). We first consider

91 1 alone in a space §t with a cyclic and separating vector *F such that

(W, yW) = \l/(y), yeWl^. Let EQ be the projection onto the subspace of

all Av invariant vectors.

(7.15) lim
J-r

strongly. Hence

(7.16) pt(y)= lim

is strongly convergent on *P and hence on WW and hence on §x by

the uniform boundedness. The mapping p^ is the conditional expectation

from 9li to the centralizer 5ft2 = 9lf relative to \j/.

If (j)^k\l/ for some A>0, then there exists /e9li such that

Then

(7.17) r
J-

converges in norm of linear functionals simultaneously for a finite number

of such $'s. Since 0 satisfying fy^hjj for some A is norm dense, it

is possible to approximate 0fc°p^ simultaneously for a finite number of
cf)k by ZA^fcoaf. where 1^0,1/1^=1. Hence the same holds for function-

als (f)k on 9l(S)9li where we approximate (j>k°(c®p$) by
with ^ denoting the identity automorphism. Hence

(7-18)

On the other hand, 912 = 9^1 is a finite algebra with ^ as a trace.

By the previous case (3), we have

(7.19)
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where we have used I%0fc = I%{^/X'®JV)}-
We can complete our proof if we show

(7.20)

Noting that 5ft®5ft2 *s ^Q set °f °f -invariant elements in 5ft®5ft1 and that
both 4>k°(c®p^) are invariant under f®of, £eR, (7.20) follows from the
following:

Lemma 60 Let & be a set of automorphisms of 9K suc/i that <f)1

and 4>2 are both ^-invariant, i.e. (t>k°g = (pk for all ge&. Let 5ft = SRG

be the set of ^-invariant elements of Wl. Then

(7.21) S&xfa/EM-SWM.

Proof. Let $ and $ be given by (4.10) and (4.12). Then $ is

invariant under automorphisms g®c on SDt®9W2 for all ge^. Hence

^®r commutes with erf. This implies that 5ft® 9M2 which is the set of

(^®f)-in variant elements of 9K®9K2 is erf invariant as a set. By the

same proof as Lemma 4, we obtain (7.21).

§80 Monotonicity for Case f

First we consider finite dimensional 91. Let E1?...SEM be the mini-

mal projections of the center of 5ft satisfying ZE — 1, Since 9l = {Elv..,

EJ" is commutative9 we have

(8.1)

for ai^ar'
The algebra ^ is a direct sum of W^- and each WjEj is a tensor

product (5ft£j)®{(5ft'n Wi)^-}. Let <t>kj be the restriction of $k to St^j,

where Ej is the identity. As in (7.5), we have

(8.2)

(8.3)
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By case (/?), we have

(8.4)

From (8.2), (8.3) and (8.4), we have monotonicity.

The case of general approximately finite algebra 91 can be deduced

from the case of finite dimensional 91 by using Lemmas 2 and 3 just

as in the proof of case /?(2).
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