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Relative Entropy for States of
von Neumann Algebras II
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Huzihiro ARAKI*

Abstract

Earlier definition of the relative entropy of two faithful normal positive linear func-
tionals of a von Neumann algebra is generalized to non-faithful functionals. Basic
properties of the relative entropy are proved for this generalization.

§ 1. Introduction

For two faithful normal positive linear functionals 0 and 0 of a von

Neumann algebra M, the relative entropy 5(01 0) is defined and its prop-

erties are proved in an earlier paper [1].

When M is a finite dimensional factor, it is given by

(1.1) S(0!0)=0(logp,-logp,)

where p^ and p^ are density matrices for 0 and (p. If 0 and <f> are

faithful, pj and p^ are strictly positive and (1. 1) clearly makes sense.

However the first term of (1. 1) always makes sense (under the conven-

tion A logA = 0 for A = 0) and the second term is either finite or infinite.

Therefore (1. 1) can be given an unambiguous finite or positive infinite

value for every ff> and 0.

We shall make corresponding generalization for an arbitrary von

Neumann algebra M and any normal positive linear functionals 0 and (j).

We shall also define the relative entropy of two positive linear functionals

of a C*-algebra ?( and give an alternative proof of a result of [2].

For the latter case, we relate the conditional entropy introduced in [3]

with our relative entropy.

Received September 10, 1976.
* ZiF, Universitat Bielefeld, BRD, Permanent address: Research Institute for Mathe-

matical Sciences, Kyoto University, Kyoto 606, JAPAN



174 HUZIHIRO ARAKI

The relative entropy for non-faithful functionals will be shown to

satisfy all properties proved for faithful functionals in [1]. Some of

these properties will be applied to a discussion of local thermodynamical

stability in [3].

For simplicity, we shall assume that M has a faithful normal state

although many of the results are independent of this assumption.

§ 2. Relative Modular Operator

Let 0 and W be vectors in a natural positive cone ^([4], [5], [6])

for a von Neumann algebra M on a Hilbert space H and let 0 and </>

be the corresponding normal positive linear functionals of M. Let SR (J2)

denote the .R-support of a vector J2, where R is a von Neumann algebra.

Definition 2e I. Operators SQI¥ and F9tf with their domains

are defined by

(2. 1) S.

(2.2) F,

where x(=M, x'^M, sM'(¥)£ = 0, sM(¥)ti'=0.

Lemma 2. 2. S$iT and F^i¥ are do sable antilinear operators.

Proof'. If x1F + J?1=x2r + J?2 for x^x^M and

sM'(¥))H, then Ql=Q2 and (^-x2) SM (W) =0, so that

sM(¥)x2*0. This shows that 50i?F is well-defined. Then it is clearly

antilinear. Similarly F0i¥ is an antilinear operator.

Let xE^M, x'^M, sM'(V)Q = sM(V)B'=Q. Then

Since S$iW and F^i¥ have dense domains, this shows the closability of
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S0i¥ and F0i¥.

Definition 2. 3. The relative modular operator A®t¥ is defined by

(2.3) ^.r=(S,.r)*Sf,r

where the bar denotes the closure.

We denote by J the modular conjugation operator associated with

the natural positive cone V.

Theorem 2.4.

(1) The kernel of J,.r is I - SM' (¥) s* (®) .
(2) The folio-wing formulas hold, -where the bar denotes the closure.

(2.4) S,.F

(2. 5) JA9t

(3) // A00_LA00, then

(2. 6) ^-•,,r =

Proof:

(1) and (2): First we prove Theorem for the special case @ =

The domain of S,F<¥ is split into a direct sum of 3 parts:

Accordingly, we split <SV,r as a direct sum

Sr.r^.reOeO

where Sy,9 is the operator on s'v(¥) SM' (¥} H defined by

S¥.¥x¥=x*¥ , xt=

and the splitting of the Hilbert space is

Since ¥ is cyclic and separating relative to SM (¥} MsM (W) in the subspace

s* (¥) s

(2.7)
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where Aw,w is the modular operator of W relative to sM(W)MsM(¥).

Since" sM'(¥}=J SM (¥) J, J commutes with SM(¥) SM\¥) and hence

leaves sM(W}sM'(W)H invariant. The restriction of J to this subspace

is the modular conjugation operator for W, as can be checked by the

characterization of J given in [4]. Therefore the known property of

the modular operator for a cyclic and separating vector implies (1) and

(2) for the case ¥ = 0.

To prove (1) and (2) for the general case, we use the 2X2 matrix

method of Connes [7]. Let M = M®M2 with M2 a type I2 factor on

a 4-dimensional space K, let utj be a matrix unit of M2, let ei5 be an

orthonormal basis of K satisfying uijekl=djkeii, let JK be the modular

conjugation operator of cn-\-e^ (i.e. «/*£# = £/*), and let

(2.8) fl

with $!=¥ and J22 ~ ^- From definition, we obtain

(2.9) Afl)=S A

Since the modular conjugation operator J for the natural positive cone

of M containing V(g) (^ + £2) is given by J(X)JK, we obtain

(2. 10) 4».

Hence (1) and (2) proved above for AQ>Q imply the same for A0i¥ and AWi9.

(3) If sM(0j) is mutually orthogonal for ./ = !, 2, then the same

holds for SM'(®J) =JsM(0j} J. By (1) and (2), the range projection of

Si is

(0j J= s»(

and is mutually orthogonal for j = l, 2. The same holds for the corange

projection. From definition we obtain

Hence we obtain (2. 6) . Q.E.D.

This follows from JW=W.
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§ 3. Relative Entropy for States of von Neumann Algebras

Let M, ¥, 0, 0 and 0 be as in the previous section. Let E®'¥ denote

the spectral projections of A$tW, s(o)^) denote the support of the positive

linear functional to.

Definition 3« 1. For 0^0, the relative entropy 5(0/0) is defined by

P°° 0 w
J+o ' =

= -f oo otherwise .

Lemma 3. 2. 5(0/0) is well defined, takes finite value or + oo and

satisfies

Proof: First consider the case 5(0)^^(0). Since s*r(¥) = s((fj)

, we have S0i?JrW = 0.

Since J@ = (D, we have (^,¥Y
/z¥-=§. Hence

(3. 2) P JT'dCfl,
J+o

This implies that the integral defining 5(0/0) converges at the lower

end. Hence it is well defined and takes either finite value or +00.

Since s(0)^s(0) implies

J^

d(0, -E/I?P0)/0(1) is a probability measure on (0, -f-°o). By the con-

cavity of the logarithm, we obtain
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The statement of Lemma holds trivially for the case where s (0) 2>5 (0)

does not hold.

Remark 3. 3. The definition of 5(0/0) uses the (unique) vector

representatives 5P" and 0 in a natural positive cone V. The value 5(0/0),

however does not depend on the choice of the natural positive cone V

because of the following reason. If V is another natural positive cone,

then there exists a unitary ie/eM' such that V'=w'V. ¥' =w'¥ and

@'=w'0 are representative vectors of 0 and 0 in V. We then obtain

d0',r' = iv'd0.r(w')* and hence 5(0/0) is unchanged.

Remark 3. 4. By Theorem 2. 4 (2) , we have

Hence, for the case 5 (0)22;5(0), we obtain the following expression ([!]):

(3. 3) 5(0/0) - - (0, log JM0) .

Remark 3. 5. If 5(0) =5(0), then J,.r is 0 on (1-5(0) Js(^J)H

and coincides with the relative modular operator for 5(0)Af5(0) on the

space 5 (0) Js (0) JH, where 0 and W are cyclic and separating for

s 0/0 Ms (0). Hence 5(0/0) in this case is the same as the relative en-

tropy of two faithful normal positive linear functionals 0 and 0 of

5 (</0 Ms (</0.

Theorem 3.6.

(1) If 0(1) = 0(I)>0, *A*rc 5(0/0) :>0. The equality 5(0/0) -0

holds if and only if 0 = 0.

(2) #•

(3. 4)

(3) For

(3. 5) S(WJrfi) =^S(0/0) -^5(1) log(V«.

(4) //
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(3.6) S(&/0)^SW0).

Proof.

(1) Since 0(5(0))<;0(1), the assumption 0(1) =0(1) and (3.1)

imply 5(0/0)2^0. Furthermore, the equality S(0/0) =0 holds only if

5(0)2^5(0) and 0(5(0)) =0(1). We then have 5(0) =5(0); hence Re-

mark 3. 5 and the strict positivity of 5(0/0) for faithful 0 and 0 ([!])

imply 0 = 0 also in the present case. Conversely 0 = 0 implies 5(0/0) =0.

(2) (3. 4) follows from (2. 6) and Definition 3. 1.

(3) The vector representatives for Ai0 and A20 differs from those

for 0 and 0 by factors (xlj) 1/2 and (A2)
 1/2 respectively. Hence this induces

a change of S0if by a factor (h/^i)1/z and a change of A®j¥ by a factor

(4/^0 • The latter proves (3. 5) .

(4) If 5(02)^>s(0) does not hold, then (3.6) is trivially true.

Hence we assume 5(02)^>5(0). Since 0!^>02 implies 5(0i)>s(02), we

also have 5 (0i) 2^5(0). The following proof is then the same as that

for the case of faithful 0's and 0:

Denoting representative vectors of 0l5 02 and 0 in the natural positive

cone by Wly Wz and 0, respectively, we obtain

= 0, (XS (0) X*) ̂ 02 (XS (0) **)=|| ( JFi, ,)
 1/2X® || 2 ,

for all x&M. Since both (J^i<8)1/2 vanish on (SM' (®') H) *- and since

M0^(\~-sM'(^H is the core of (4rll(9)
1/2, it follows that the domain

of (Jri.0)1/2 is contained in the domain of (Jr2i<ZJ)
1/2 and for all J2 in the

domain of ( A ¥ , ® ) l / z

Hence

for all such J2 and r>0. Taking 5= (Jr,.* + r)~1/2J2/ with an arbitrary

we find
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Taking adjoint operator acting on &= (A¥z>0 + r) ~1/2Q' with an arbitrary

£', we find

and hence

(3.7)

By (3. 3) we have

(3.8) 5(0,/0) =- f"j
Jo I Jo

where E^J>ai is the spectral projection of 4^,0 and the interchange of

r- and A- integrations are allowed because the double integral is definite

in the Lebesque sense (finite or + oo) due to

The equations (3. 8) and (3. 7) imply (3. 6) . Q.E.D.

The following Theorem describes the continuity property of

as a function of 0 and (j). (It is the same as the case of faithful

and 0.)

Theorem 3. 7.

Assume that lim||0a — 0|| =lim||0a — 0|| =0.

(1) lim inf 5(</'a/0a)^*S(0/0) (£Ae lower semicontinuity) .

(2) XT ;i0a^a /or

lim

(3) I/" 0a z*5 monotone decreasing^ then

We shall give proof of this Theorem in the next section. Using

this theorem in an approximation argument, we obtain the next theorem

from the same theorem ([!]) for faithful functionals.
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Theorem 3.8.

(1) 5 (0/0) is jointly convex in 0 and 0.

(2) Le£ N be a von Neumann subalgebra of M and ENo) denotes

the restriction of a functional c) to N. Then

(3.9)

A7" is any one of the follozving type:

(a) JV=2T f! M for a finite dimensional abelian ^-subalgebra St of

M.

C/9) M=N®N,.

(f) JV zs approximately finite.

Proof.

(1) We have to prove the following

(3. 10) S(
y=i j=i j=i

for Ay>0, E^- = l- Let 0 = E^0y. 0 = E^y, ^ = 0 + 0. By Remark 3. 5,

71

5(0 + sto/0 + ??a)) ^1] ^-5(0,- + eo)/^ + 770))

follows from the convexity of S(00/0o) for faithful 00 and 00- We first

take the limit 17— > + 0 using Theorem 3.7 (2) and then take the limit

£-> + 0 using Theorem 3. 7 (3) to obtain (3. 10) .

(2) Let (00 be a faithful normal state of M and let a) = o)0 + <f> + 0.

Then

Again Theorem 3. 7 (2) and (3) yield (3. 9) . Q.E.D.

The following Theorem describe some continuity property of S(EN([j/

EN& on N.

Theorem 3. 9. Let Na be monotone increasing net of von

Neumann subalgebras of M generating M.

(1) lim inf S(ENa^/ENJ) ^5(0/0) .

(2) If Na is an AF algebra for all a, then
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Proof of (1) and (2) will be given in the next section. (2) follows

from (1) and Theorem 3. 8 (2) (r) .

Let 0 be a faithful normal positive linear functional of M correspond-

ing to a cyclic and separating vector W and h = h*£=M. Let W (K) denote

the perturbed vector defined by (4. 1) in [8]. Let 0ft denote the per-

turbed state defined by

Theorem 3B 10.

= -tf(A) +5(0/0),

=0* (A) +5(070*).

§ 4. Some Continuity Properties

We first prove some continuity properties of the relative modular

operators.

Lemma 4. I. If lim ||0« — $|| =lim||0« — 0|| =0, then

(4 1) lim(r+ (^.rJ'TV'^) = (r+ (zU)1/2) 'V'^)

/br r^>0 <z/^ the convergence is uniform in r if r is restricted to

any compact subset of (0, oo), where 0a, Wa, 0 ^7^^/ W are the repre-

sentative vectors of </>a, 0a, 0 and 0 m ^/z^ positive natural cone,

respectively.

Proof. The condition lim||0a — 0|| =lim||0a — 0|| =0 implies (Theorem

4(8) in [4])

(4.2)

For x'GLM', we have
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Hence

(4. 3) lim s>r(¥a) sx(¥) = slI(W") .

For x^M SM(¥~), we have

= W... r«) "^ - JV: r) "^ II

Hence

x

Since M 5W(?F)r+(l-5a'(?/'))^ is a core for (^,y)
1/2, the vectors

( 1 + ( J.. r)
 1/2

are dense in s*' (¥) H. Since

is uniformly bounded, we obtain

The rest of the proof is standard. For r>0 and

(4.4)

with

If J = J*I>0, lim(l+^a)~1^= (H-^)"^ for a projection s commuting with

J, then the formula
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implies

where the convergence is uniform if r is restricted to any compact subset

of (0, oo). By applying this result to Aa = (J,a, ?-J
 1/2, A=(A<Dt¥)

l/z and

j = sjlf'(55r), we obtain the Lemma. Q.E.D.

Proof of Theorem 3. 7 (1). We divide our proof into several steps.

Obviously we may omit those a for which s(</>a) 2>s(0«) does not hold

out of our consideration so that we may assume 5 ((/>«) 2S5 (0a) f°r a^l ^

without loss of generality.

(a) The case -where 0 Z5 faithful'. Due to A'(0)=l, we have

=l. Hence (4.2) and Lemma 4.1 imply

(4.5) lim

for all 0<£<L<oo. (Note that

is uniformly bounded.)

We also have the following estimates:

(4.6) f'dr (^,{(
Jo

= f'dr | f
Jo i Jo

^ f'dr fe°niax(l,rI)d(0a,.E?*r«0B)
Jo Jo

due to (3. 2), where E*a'¥" is the spectral projection of

(4. 7) f°°dr f1 { (1 + r) -1 - (r + A1/2) -1

= f°°dr f1(
JL Jo
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^ JL

Finally

(4. 8) £" dr £" { (1 + ;-) < - (r 4 A1''2) ' '} d «fla> £/- '"0J ^0 .

Hence

(4.9) Hminf f" dr(0a,{ (I + r) "- [r + (J.a.rJ "2]-'} (Ja)Jo

We now use the following formula, which holds if 5(0) I>5(

(4.10) 5(0/0) =2

--2 f"dr(0,
Jo

where the change of the order of r- and A- integrations is allowed because

the integral is definite in the Lebesgue sense (finite or +°°) due to

(3.2).

By taking the limit e— > + 0 and Z/— > + oo and by substituting (4.10)

and the same formula for the pair 0Qi f/)a, we obtain Theorem 3. 7 (1)

for this case.

(b) The case where $a fs independent of a: By (3. 3) and by

the same computation as (4. 10) , we obtain

(4.11) 5(&/tf)--=-2 rdr(0,{(l + /-)-1-[r-i-(Jf.a..)
I '1]-I}0)

Jo

where the boundedness

(4. 12) f " M(<Z>, £/«••«) = 1| (Jr...)1^!!' = ^a(s WX°o
Jo

guarantees the definiteness of the integral in (4.11). (Note that 5(0a)
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By Lemma 4. 1 and by the same argument as the Case (a), we

obtain

(4.13) lim

>-2 r
Jo

Since (A¥i<D)l/z commutes with SM (¥) = JsM'(¥)J, the inner product in

(4.13) is the sum of contributions from the expectation values in (1 —

and SM(¥}®. The first one is given by

-2
Jo

if

i.e. if -?(</;) ̂ >.s(0) does not hold. The second one is either finite or + oo

by (4.12). Hence if s(0)2Ss(0) does not hold, then

(4. 14) lim S(0«/tf) - + oo

If s(0)S>s(0) holds, then (4.13) already proves Theorem 3.7 (1) for

the present case.

(c) General case: Let a) be a normal faithful state. For

we obtain

lim in

by the Case (a) . By Theorem 3. 6 (4) ,

Hence

lim inf 5 (<l>J<fi a) ^

By taking the limit £— > + 0 and using the Case (b), we obtain Theorem

3. 7 (1) for the general case.

Proof of Theorem 3. 7 (2). If o/^/T1^ for ^>0, then (3. 7) implies
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Due to the identity

(r-f-p172)-1^-1 Pcp + ̂ -^ + r8)-1*1"^, r>0,
Jo

for a positive self-adjoint p, this implies

Hence

Therefore

(4.15) -ea>(l)^- dr (fl,

for e>0. We also have for L>0

(4.16)

- £" dr (3, { (1 + r) -1 - [

where the last inequality is obtained by using the spectral decomposition

and majorizing (r + /11/2) ~'(AI /2-l) by r'U for 0<^L Since

lim

the estimates (4. 15) and (4. 16) for (a)', a)) = (</>„, 0a) and for (a)', a))

= GM) yield
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(4.17) lim f"dr(0a,{(l+r)-1-[r+(Jra..a)
l/1]-1}00)

JO

= f"dr(0,
Jo

Since A0a^0a and its consequence /10>0 imply s(0a)^s(0a) and 5(0)

2>s(0), the equations (4. 17) and an expression of the form (4. 11) for

•K0«/0J and 5(0/0) imply Theorem 3.7 (2).

Proof of Theorem 3. 7 (3) . This follows from Theorem 3. 7 (1)

and Theorem 3.6 (4). Q.E.D.

Remark 4. 2. The argument leading to (4. 14) implies that the

formula

(4.18) 5(0/0) = -2 f
Jo

which is used in (4.11) for the case s (0)2^(0), holds for a general

pair 0 and 0 (even if s(0)2>s(0) does not hold), this is not the case

for the formula of the form (4. 10) .

Proof of Theorem 3. 9 (1). Let COQ be a faithful state, a) = COQ + 0 + 0,

and 1>£>/*>0. The proof of Lemma 3 in [1] (without the assumption

0<I&0 there) implies

(4. 19) lim inf S(ENa^/ENJ,} ^5(0./^)

where

0e= (1 — £)0H-£0) , <pfl = (1

By the convexity (Theorem 3. 8 (1) ) ,

(4. 20)

By Theorem 3. 6 (4) and (3) , we have

(4. 21) S(ENMENaa>} <S(ENa

= — 0>(1) log£<00 .

By Theorem 3. 7 (2)
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(4.22) limS(0e/^)=5(0e/0).
/<-»o

The formulas (4.20), (4.21) and (4.22) imply in the limit #-> + 0

(4. 23) lim inf

By Theorem 3. 7 (3) ,

(424)

By Theorem 3. 6 (4) ,

(4. 25) S(ENa^/ENa^ <,S(ENa (1 - e)

log (1 - s) .

The formulas (4.23), (4.24) and (4.25) imply in the limit £->-{- 0

Theorem 3. 9 (1) .

Proof of Theorem 3. 9 (2) . This follows from Theorem 3. 9 (1)

and Theorem 3.8 (2) (7). Q.E.D.

Proof of Theorem 3. 10. First consider the case where (/) is faithful.

Then J2 given by (2. 8) is cyclic and separating for M. From the defini-

tion of the perturbed state and the expression (2. 10), we obtain

(4. 26) V (7z) ®en

By (4.13) of [8], we have

(4. 27) log Jf i^«g) l lu) = log A

Here j(^) denotes «7A«7. By (2. 10), we obtain

(4. 28) log J, (*,,. = log 4,., + /? ,

(4. 29) log J..f w) = log J,.f -j(/0-

By (3. 3), for example, we obtain Theorem 3. 10 for the present case

of a faithful 0.

For the general case, we apply the result just proved to

0S=(1--S)0 + S0, £>0,

which is faithful:
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(4. 30) S(0V&) = - (1 - e) ?i (A) - e0 (h)

From the convexity of the relative entropy, we obtain

Combining the limit £— > + 0 of this relation with Theorem 3.7 (1), we

obtain

(4.31) limS(0V0,)=W/W.
e-» + 0

For h = 0, we have the same equation for 0. Hence the first equation of

Theorem 3. 10 follows from (4. 30) . The second equation of Theorem

3. 10 is trivially true for a non-faithful 0 because both sides of the equa-

tion is then + °°.

§ 5. Relative Entropy of States of C*- Algebras

For two positive linear functionals 0 and 0 of a C*-algebra 31, we

define the relative entropy 5(0/0) by

(5.1)

where 0 and (/> are the unique normal extension of 0 and 0 to the envelop-

ing von Neumann algebra 21".

If the cyclic representation n^ associated with 0 does not quasi-contain

the cyclic representation n^ associated with 0, then the central support

of 0 does not majorize that of 0, hence s(0)>s(0 ) does not hold. There-

fore

(5.2)

if 71$ does not quasi-contain 7T0.

From the definition (5. 1), it follows that

(5. 3) 5(0/0) =S($/$)

where 0 and $ are the unique normal extension of 0 and (j) to M= 7T(2l)"

where 7T = 7T0©7r#. If 21 is separable, then M=7r(2l)r/ for this 7T has

a separable predual and hence all results in previous sections apply. In

particular, if 2ta is a monotone increasing net of nuclear C*-subalgebras

of 21 generating 21, then
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(5. 4) lim S(En^/E^a(/>)

This implies the result in [2] that if

sup S(E«a0/Eaa0) <oo ,

then Tr^ quasi-contains Tfy.

If 21 is separable, then the restriction of the envelopping von

Neumann algebra 21 " to a direct sum of a denumerable number of cyclic

representations of 21 has a faithful normal state. Hence Theorems 3. 6,

3. 8, and 3. 9 as well as Theorem 3. 7 for sequences are valid for positive

linear functionals of C*-algebras.

If 0 is a positive linear functional of a C*-algebra 31 such that the

corresponding cyclic vector W for the associated cyclic representation n^

of 21 is separating for the weak closure 7T0(2l)", then the perturbed

state (//* for A = A*e3l is defined by

(5.5) 0*(a) = (Sr[^(A)],^(fl)F[^(A)]), *e=2l.

For such </;, Theorem 3. 10 holds for C*-algebras.

§ 6e Conditional Entropy

Let 21 be a UHF algebra with an increasing suquence of finite

dimensional factors 2ln generating 21. Let 2Jm,n be the relative corn-

mutant of 2tn in 2lm. The conditional entropy *Sn(0) of a positive linear

functional (f) of 21 is defined by

(6. 1) 3. (0) = lim (S(Evj-) - 5(JEaa » )
77l-»oo

where

for a positive linear functional 0 of a finite dimensional factor 3Jlfc and

p^ is the densitjr matrix of (/> defined by

with the unique trace state r of sJJ£ft. ([3])

Let 2Ic,n be the relative commutant of 21^ in 2[, o) be the restriction

of (f> to 2lc,n and o)' be any positive linear functional on 2lc,n. Then
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(6. 2)

where rn is the unique trace state on §!„, because the density matrices

for £am(rn(g)ft)') and for -Ea°IX are the same element of 21.

By taking the limit w— »oo and using (5. 4), we obtain

(6. 3) Sn (0) = S(fl)7fl>) - S(r»<gta>Y0) •

Since the left hand side is finite, it follows that if either S(ti)'/(D) or

S(rn(g)a)'/0) is finite, then both quantities are finite and (6. 3) holds.

This formula has been used in [3] .
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